Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonding metal surface

A third difficulty in bonding metal surfaces is that they have a higher thermal coefficient of expansion and thermal conductivity than most epoxy adhesive systems. As explained in other chapters of this book, the difference in rates of thermal expansion results in internal stresses in the adhesive joint, especially when the adhesive bond is cured at elevated temperatures or when it is exposed to low temperatures or repeated thermal cycling. [Pg.345]

Primary benefits of the second-generation acrylics included increased toughness and impact strength of metal-to-metal bonds, as well as the ability to bond metal surfaces, even oily metal surfaces, with little or no surface preparation. The products were also shown to be capable of effective performance as 100% solids alternatives to solvent cements in application such as plastic pipe bonding and decorative lamination of vinyl and high-pressure laminates to metals and particle board [2]. [Pg.85]

Fig. XVIII-16. A four-electron two-orbital interaction that a) has no net bonding in the free molecule but can be bonding to a metal surface if (b) the Fermi level is below the antibonding level. In the lower part of the figure, a zero-electron two-orbital situation (c) has no bonding but there can be bonding to a metal surface as in (d) if the Fermi level is above the bonding level. (From Ref. 160.)... Fig. XVIII-16. A four-electron two-orbital interaction that a) has no net bonding in the free molecule but can be bonding to a metal surface if (b) the Fermi level is below the antibonding level. In the lower part of the figure, a zero-electron two-orbital situation (c) has no bonding but there can be bonding to a metal surface as in (d) if the Fermi level is above the bonding level. (From Ref. 160.)...
Hydrogen atoms chemisorbed on a metal surface may be bonded to just one metal atom or may be bonded to two atoms in a symmetrical bridge. In each case, there are three normal modes. Sketch what these are, and indicate any degeneracies (assume the metal atoms to be infinitely heavy). [Pg.742]

Chemisorption occurs when the attractive potential well is large so that upon adsorption a strong chemical bond to a surface is fonued. Chemisorption involves changes to both the molecule and surface electronic states. For example, when oxygen adsorbs onto a metal surface, a partially ionic bond is created as charge transfers from the substrate to the oxygen atom. Other chemisorbed species interact in a more covalent maimer by sharing electrons, but this still involves perturbations to the electronic system. [Pg.294]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

The strong bond fonned between tire tliiol endgroups and gold and silver surfaces allows tire possibility of fonning molecules tliat have a wide variety of different functional groups at tire opposite end and tluis of coating a noble metal surface witli a variety of differently functionalized molecules and mixtures. [Pg.2627]

The commonly accepted mechanism of heterogeneously catalyzed hydrogenation involves activation of both the hydrogen and the C—C multiple bond adsorbed on the metal surface. First one hydrogen atom is transferred to the least hindered position of the multiple bond to give a half-hydrogenated adsorbed species. This reaction is fully reversible and ac-... [Pg.101]

Other Techniques. The FEP resin is bonded to metal surfaces by the appHcation of heat and pressure it can be heat sealed or hot-gas welded. Heating FEP at 260°C and allowing it to cool slowly results in stress relieving, or annealing. The FEP film is used to weld PTFE-coated surfaces. [Pg.362]

To obtain a metallurgical bond between two metals, the atoms of each metal must be brought sufficiently close so that their normal forces of interatomic attraction produce a bond. The surfaces of metals and alloys must not be covered with films of oxides, nitrides, or adsorbed gases. When such films are present, metal surfaces do not bond satisfactorily (see Metal surface treatments). [Pg.143]

Metal Preparation. Preparation of the metal surfaces to be bonded usually is required because most metals contain surface imperfections or contaminants that undesirably affect bond properties. The cladding faces usually are surface ground, using an abrasive machine, and then are degreased with a solvent to ensure consistent bond strength (26). In general, a surface finish that is >3.8 fim deep is needed to produce consistent, high quaUty bonds. [Pg.148]

Infrared patterns can lead to detection of lack of bonding between surface platings, between coatings and base metal, or within bra2ed honeycombs and other composite materials where bonding is vital. Mote recent developments involve infrared television or image tubes similar to the types used for night vision in military and other appHcations. [Pg.130]

Copper Corrosion Inhibitors. The most effective corrosion inhibitors for copper and its alloys are the aromatic triazoles, such as benzotriazole (BZT) and tolyltriazole (TTA). These compounds bond direcdy with cuprous oxide (CU2O) at the metal surface, forming a "chemisorbed" film. The plane of the triazole Hes parallel to the metal surface, thus each molecule covers a relatively large surface area. The exact mechanism of inhibition is unknown. Various studies indicate anodic inhibition, cathodic inhibition, or a combination of the two. Other studies indicate the formation of an insulating layer between the water surface and the metal surface. A recent study supports the idea of an electronic stabilization mechanism. The protective cuprous oxide layer is prevented from oxidizing to the nonprotective cupric oxide. This is an anodic mechanism. However, the triazole film exhibits some cathodic properties as well. [Pg.270]

In addition to bonding with the metal surface, triazoles bond with copper ions in solution. Thus dissolved copper represents a "demand" for triazole, which must be satisfied before surface filming can occur. Although the surface demand for triazole filming is generally negligible, copper corrosion products can consume a considerable amount of treatment chemical. Excessive chlorination will deactivate the triazoles and significantly increase copper corrosion rates. Due to all of these factors, treatment with triazoles is a complex process. [Pg.270]


See other pages where Bonding metal surface is mentioned: [Pg.32]    [Pg.16]    [Pg.32]    [Pg.16]    [Pg.366]    [Pg.439]    [Pg.634]    [Pg.714]    [Pg.714]    [Pg.904]    [Pg.907]    [Pg.910]    [Pg.951]    [Pg.1682]    [Pg.2222]    [Pg.2228]    [Pg.2703]    [Pg.2709]    [Pg.2749]    [Pg.2752]    [Pg.111]    [Pg.441]    [Pg.233]    [Pg.167]    [Pg.80]    [Pg.251]    [Pg.251]    [Pg.130]    [Pg.137]    [Pg.144]    [Pg.148]    [Pg.196]    [Pg.477]    [Pg.96]    [Pg.173]    [Pg.41]    [Pg.541]    [Pg.369]    [Pg.5]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Adsorbate Electronic Structure and Bonding on Metal Surfaces

Bonding to Transition Metal Surfaces

Chemical Bonding to Transition-Metal Surfaces

Metallic surface bond

Metallic surface bond

Supported Metal Complexes—Molecular Analogues Bonded to Surfaces

Surface bonds

The Quantum Chemistry of Transition Metal Surface Bonding and Reactivity

Transition metal surface bonding and reactivity

© 2024 chempedia.info