Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bond law

The Wtirtz-type reaction was applied in the syntheses of organotin componnds, containing an Sn—Sn bond. Law prepared hexabenzyldistannane (PhCH2)3SnSn(CH2Ph)3 for the first time in 1926 by the reaction of Na with (PhCH2)3SnCl in toluene . [Pg.41]

New and sophisticated covered bond laws, offering significant improvements to the original Pfandbrief model, have been introduced in France, Spain, Luxembourg, and now Ireland. Germany has responded with its amendments to the Mortgage Bank Act. [Pg.227]

Strand was treated as a two layer parallel chains, where the core chain was bonded to the matrix by non-linear bond elements. A smeared bond law was developed for this simulation. [Pg.542]

Born-Haber cycle A thermodynamic cycle derived by application of Hess s law. Commonly used to calculate lattice energies of ionic solids and average bond energies of covalent compounds. E.g. NaCl ... [Pg.64]

Sequences such as the above allow the formulation of rate laws but do not reveal molecular details such as the nature of the transition states involved. Molecular orbital analyses can help, as in Ref. 270 it is expected, for example, that increased strength of the metal—CO bond means decreased C=0 bond strength, which should facilitate process XVIII-55. The complexity of the situation is indicated in Fig. XVIII-24, however, which shows catalytic activity to go through a maximum with increasing heat of chemisorption of CO. Temperature-programmed reaction studies show the presence of more than one kind of site [99,1(K),283], and ESDIAD data show both the location and the orientation of adsorbed CO (on Pt) to vary with coverage [284]. [Pg.732]

In contrast to the bimoleciilar recombination of polyatomic radicals ( equation (A3.4.34)1 there is no long-lived intennediate AB smce there are no extra intramolecular vibrational degrees of freedom to accommodate the excess energy. Therefore, the fonnation of the bond and the deactivation tlirough collision with the inert collision partner M have to occur simultaneously (within 10-100 fs). The rate law for trimoleciilar recombination reactions of the type in equation (A3.4.47) is given by... [Pg.770]

The fonn of the classical (equation C3.2.11) or semiclassical (equation C3.2.11) rate equations are energy gap laws . That is, the equations reflect a free energy dependent rate. In contrast with many physical organic reactivity indices, these rates are predicted to increase as -AG grows, and then to drop when -AG exceeds a critical value. In the classical limit, log(/cg.j.) has a parabolic dependence on -AG. Wlren high-frequency chemical bond vibrations couple to the ET process, the dependence on -AG becomes asymmetrical, as mentioned above. [Pg.2982]

Our work is targeted to biomolecular simulation applications, where the objective is to illuminate the structure and function of biological molecules (proteins, enzymes, etc) ranging in size from dozens of atoms to tens of thousands of atoms today, with the desire to increase this limit to millions of atoms in the near future. Such molecular dynamics (MD) simulations simply apply Newton s law to each atom in the system, with the force on each atom being determined by evaluating the gradient of the potential field at each atom s position. The potential includes contributions from bonding forces. [Pg.459]

For each pair of interacting atoms (/r is their reduced mass), three parameters are needed D, (depth of the potential energy minimum, k (force constant of the par-tictilar bond), and l(, (reference bond length). The Morse ftinction will correctly allow the bond to dissociate, but has the disadvantage that it is computationally very expensive. Moreover, force fields arc normally not parameterized to handle bond dissociation. To circumvent these disadvantages, the Morse function is replaced by a simple harmonic potential, which describes bond stretching by Hooke s law (Eq. (20)). [Pg.341]

Compared with the Morse potential, Hooke s law performs reasonably well in the equilibrium area near If, where the shape of the Morse function is more or less quadratic (see Figure 7-9 in the minimum-energy region). To improve the performance of the harmonic potential for non-equilibrium bond lengths also, higher-order terms can be added to the potential according to Eq. (21). [Pg.342]

As for bond stretching, the simplest description of the energy necessary for a bond angle to deviate firom the reference value is a harmonic potential following Hooke s law, as shown in Eq. (22). [Pg.342]

Hooke s law functional form is a reasonable approximation to the shape of the potential gy curve at the bottom of the potential well, at distances that correspond to bonding in md-state molecules. It is less accurate away from equilibrium (Figure 4.5). To model the se curve more accurately, cubic and higher terms can be included and the bond- ching potential can be written as follows ... [Pg.190]

As a simple example of a normal mode calculation consider the linear triatomic system ir Figure 5.16. We shall just consider motion along the long axis of the molecule. The displace ments of the atoms from their equilibrium positions along this axis are denoted by It i assumed that the displacements are small compared with the equilibrium values Iq and th( system obeys Hooke s law with bond force constants k. The potential energy is given by ... [Pg.293]

The force on one nucleus due to sPetching or compressing the bond is equal to the force constant of the bond k times the distance between the nuclei x2 — xi). It is equal and opposite to the force acting on the other nucleus, and it is also equal to the mass times the acceleration x by Newton s second law (see section on the hamionic oscillator in Chapter 4). The equations of motion are... [Pg.286]

A cross-linked polymer has a density of 0.94 g cm" at 25°C and a molecular weight between crosslinks of 28,000. The conformation of one bond in the middle of the molecule changes from trans to gauche, and the molecule opens up by 120°. In w-butane, the trans to gauche transformation requires about 3.3 kJ mol". Estimate a value for AH of stretching based on this model, and use the law of cosines to estimate the magnitude of the opening up that results. [Pg.142]

We can use the law of cosines to estimate the effect on the end-to-end distance as follows. Picture two vectors of equal length b extending from the center of the chain to each of the ends. In the trans conformation of the center bond the... [Pg.142]

Figure 1.11(b) illustrates the ball-and-spring model which is adequate for an approximate treatment of the vibration of a diatomic molecule. For small displacements the stretching and compression of the bond, represented by the spring, obeys Hooke s law ... [Pg.23]

Molecular Dynamics and Monte Carlo Simulations. At the heart of the method of molecular dynamics is a simulation model consisting of potential energy functions, or force fields. Molecular dynamics calculations represent a deterministic method, ie, one based on the assumption that atoms move according to laws of Newtonian mechanics. Molecular dynamics simulations can be performed for short time-periods, eg, 50—100 picoseconds, to examine localized very high frequency motions, such as bond length distortions, or, over much longer periods of time, eg, 500—2000 ps, in order to derive equiUbrium properties. It is worthwhile to summarize what properties researchers can expect to evaluate by performing molecular simulations ... [Pg.165]


See other pages where Bond law is mentioned: [Pg.1831]    [Pg.135]    [Pg.41]    [Pg.1590]    [Pg.2289]    [Pg.2735]    [Pg.292]    [Pg.2272]    [Pg.47]    [Pg.181]    [Pg.1831]    [Pg.135]    [Pg.41]    [Pg.1590]    [Pg.2289]    [Pg.2735]    [Pg.292]    [Pg.2272]    [Pg.47]    [Pg.181]    [Pg.50]    [Pg.54]    [Pg.463]    [Pg.491]    [Pg.2823]    [Pg.361]    [Pg.368]    [Pg.183]    [Pg.185]    [Pg.189]    [Pg.212]    [Pg.113]    [Pg.284]    [Pg.302]    [Pg.32]    [Pg.7]    [Pg.115]    [Pg.143]    [Pg.154]    [Pg.161]   
See also in sourсe #XX -- [ Pg.135 ]




SEARCH



Bonds Law and Work Index

Bond’s law

Ionic bonding Coulomb’s law

© 2024 chempedia.info