Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double bonds bond enthalpies

If has long been known that the enthalpy of hydrogenalion of benzene (49.8 kcal moU Conant and Kistiakowsky, 1937) is not the same as three times the enthalpy of hydrogenation of cyclohexene (3 x 28.6 kcal moU ). Evidently, the double bonds that w e write in the Kekule structure of benzene... [Pg.155]

What is the MM3 enthalpy of formation at 298.15 K of styrene Use the option Mark all pi atoms to take into account the conjugated double bonds in styrene. Is the minimum-energy structure planar, or does the ethylene group move out of the plane of the benzene ring ... [Pg.168]

Robert Curl, Richard Smalley, and Harold Kroto were awarded the Nobel prize in chemistry in 1996 for the discovery of the soccer-ball-shaped molecule C60. This fundamental molecule was the first of a new series of molecular allotropes of carbon. The enthalpy of combustion of C60 is —25 937 kj-mol, and its enthalpy of sublimation is +233 kj-mol There are 90 bonds in C60, of which 60 are single bonds and 30 are double bonds. Like benzene, C60 has... [Pg.385]

The exact enthalpy of polymerization for a particular monomer will depend on the steric and electronic effects imposed by the substituents attached to the E=E double bond. For olefins, resonance stabihzation of the double bond and increased strain in the polymer due to substituent interactions are the most important factors governing AHp For example, propylene has a calculated AH of -94.0 kJ moT, whereas the polymerization of the bulkier 2-methylpropene is less exothermic (-78.2 kJ moT ) [63]. Due to resonance effects, the experimentally determined AH of styrene (-72.8 kJ mol ) is less exothermic than that for propylene, while that for bulkier a-methylstyrene is even less favorable (-33.5 kJ moT ) [63]. In general, bulky 1,2-disubstituted olefins (i.e., PhHC= CHPh) are either very difficult or impossible to polymerize. [Pg.114]

Ketones are generally not polymerizable, despite claims that acetone can be polymerized at low temperatures (1 ). A simple explanation for the lack of polymerizability of ketones compared to vinyl monomers can be deduced from consideration of Pauling (Z) average bond energies as shown in Equations 1 and 2, where AHP°l(est) is the estimated enthalpy of polymerization based upon the difference in bond energies of the two single bonds formed in the polymer compared to the double bond in the monomer ... [Pg.141]

With the availability of stable geometric isomers of doubly bonded germanium compounds, experimental determinations of the 7r-bond strength can be made. The enthalpy of activation for double bond isomerization in Mes(Tip)Ge=Ge(Tip)Mes (Tip = 2,4,6-triisopropylphenyl) has been determined for the Z-E conversion, 22.2 . 3 kcal/mol and for the E-Z conversion, 20.0 0.3 kcal/mol.15 These values agree well with recent theoretical estimations.7 The isomerization barrier in germaphos-... [Pg.286]

The application of the calculated reaction enthalpy allows us to estimate the kinetic chain length (approximately 30) and other kinetic data (reaction rate, final conversion, inhibition time) of the crosslinking reaction. The reaction rate (dx/dt) of this process is a function of the light intensity, the exposure time, of the thiol content of the system (see Fig. 1) and also of the photoinitiator used. The final degree of conversion of the double bonds is generally high (80 - 100 %). [Pg.263]

The greater enthalpy of cis isomers can be attributed to strain caused by the crowding of two alkyl groups on the same side of the double bond. [Pg.280]

An aromatic ring and a double or triple bond in the a-position relative to the C—H bond weaken this bond by virtue of the delocalization of the unpaired electron in its interaction with the iT-bond. The weakening of the C—H bond is very considerable for example, D(C—H) is 422 kJ mol-1 in ethane [27], 368 kJ mol-1 in the methyl group of propene [27] (AD = 54 kJ mol-1), and 375 kJ mol-1 in the methyl group of toluene [27] (AD = 47 kJ mol-1). Such decrease in the strength of the C—H bond diminishes the enthalpy of the radical abstraction reaction and, hence, its activation energy. This effect is illustrated below for the reactions of the ethylperoxyl radical with hydrocarbons ... [Pg.258]

The simplest nonconjugated, acyclic diene is 1,4-pentadiene (1), with its enthalpy of formation of 105.6 kJmol-1. The obvious question is whether the two double bonds are truly independent. If they are, then the enthalpy of hydrogenation of one double bond as in (the identical) reactions 4a and 4b would be precisely one half of that of the hydrogenation of both as in reaction 5. [Pg.71]

We start with a discussion of allene (propadiene), the simplest diene of all. Its gas phase enthalpy of formation is 190.5 1.2 kJmol-1. We wish to compare this quantity with that of related monoenes. The first comparison addresses the relative stability of one and two double bonds in a 3-carbon chain. Conceptually, this may be expressed as the enthalpy of the formal reaction 9... [Pg.72]

This class of compounds is defined to have some of the three conjugated double bonds found in the ring and others not. This class includes the isomeric 3,3 -bis(cyclohexenylidenes), 100 and 101. Roth shows us that the two isomers have the same enthalpy of formation within ca 1 kJmol-1, a difference somewhat smaller than the 4 kJmol-1 found for the totally acyclic 1,3,5-hexatrienes, 79 and 80 respectively. Naively these two sets of trienes should have the same (E)/(Z) enthalpy difference. Given experimental uncertainties, we will not attempt to explain the difference69. We may compare 100 and 101 with phenylcyclohexane, 102, an isomeric species which also has the same carbon skeleton. There is nearly a 110 kJ mol-1 enthalpy of formation difference between the semicyclic and cyclic trienes. We are not surprised, for the word cyclic is customarily replaced by aromatic when in the context of the previous sentence. [Pg.91]

By Hess s Law, these two approaches must yield the same energy of interaction between the two double bonds. The virtue of this latter approach is that enthalpy of formation data for the... [Pg.104]

We have summed the enthalpy of formation of five ethylenes for the five formal double bonds and 6(5) for the six formal single bonds by analogy to our discussion of [18]annulene. [Pg.110]

Extensive theoretical studies have been carried out to probe the nature of the allyl anion. These studies supplement and extend the experimental results. Allyl anion is of special interest because it is the simplest 7r-delocalized carbanion with 4 electrons and 3 Pjr-centers. Much recent theoretical discussion has concerned the role of resonance in the stabilization of such conjugated systems, a stabilization defined as the enthalpy difference between the localized double-bonded system and its conjugated state. The stabilization of allyl anion has generally been attributed to the delocalization of charge associated... [Pg.740]


See other pages where Double bonds bond enthalpies is mentioned: [Pg.108]    [Pg.467]    [Pg.90]    [Pg.156]    [Pg.219]    [Pg.325]    [Pg.209]    [Pg.801]    [Pg.224]    [Pg.383]    [Pg.385]    [Pg.996]    [Pg.171]    [Pg.128]    [Pg.89]    [Pg.41]    [Pg.42]    [Pg.104]    [Pg.203]    [Pg.64]    [Pg.196]    [Pg.70]    [Pg.74]    [Pg.77]    [Pg.79]    [Pg.80]    [Pg.82]    [Pg.83]    [Pg.86]    [Pg.87]    [Pg.88]    [Pg.89]    [Pg.102]    [Pg.105]    [Pg.108]   
See also in sourсe #XX -- [ Pg.495 ]




SEARCH



Bond enthalpy

Enthalpy bonding

Enthalpy doubling

© 2024 chempedia.info