Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boiling points azeotropic distillation

This example clearly shows good distribution because of a negative deviation from Raonlt s lawin the extract layer. The activity coefficient of acetone is less than 1.0 in the chloroform layer. However, there is another problem because acetone and chloroform reach a maximum-boiling-point azeotrope composition and cannot be separated completely by distillation at atmospheric pressure. [Pg.1452]

Water and ethanol form a low boiling point azeotrope. So, water cannot be completely separated from ethanol by straight distillation. To produce absolute (100 per cent) ethanol it is necessary to add an entraining agent to break the azeotrope. Benzene is an effective entrainer and is used where the product is not required for food products. Three columns are used in the benzene process. Column 1. This column separates the ethanol from the water. The bottom product is essentially pure ethanol. The water in the feed is carried overhead as the ternary azeotrope of ethanol, benzene and water (24 per cent ethanol, 54 per cent benzene, 22 per cent water). The overhead vapour is condensed and the condensate separated in a decanter into, a benzene-rich phase (22 per cent ethanol, 74 per cent benzene, 4 per cent water) and a water-rich phase (35 per cent ethanol, 4 per cent benzene, 61 per cent water). The benzene-rich phase is recycled to the column as reflux. A benzene make-up stream is added to the reflux to make good any loss of benzene from the process. The water-rich phase is fed to the second column. [Pg.190]

FIGURE 8.44 The temperature-composition diagram of a low-boiling-point azeotrope (such as ethanol and benzene). When this mixture is fractionally distilled, the (more volatile) azeotropic mixture is obtained as the initial distillate. [Pg.534]

For both minimum- and maximum-boiling-point azeotropes, fractional distillation can only separate a solution into a pure component and the azeotrope, not into the two pure components. It is not possible to distill past an azeotropic concentration. Absolute alcohol cannot be prepared by simply distilling aqueous solutions obtained by fermenting grains. [Pg.273]

The formation of TRI is undesired, because its removal by distillation is very difficult. In fact, TRI and EDC form a low-boiling point azeotrope very close to EDC. The formation of TRI in the oxychlorination reactor is due to the acetylene entrained with the HC1 byproduct from cracking. Two solutions can be adopted ... [Pg.208]

Water and ethanol form a low boiling point azeotrope hence, water cannot be completely separated from ethanol by conventional distillation. To produce absolute (100%) ethanol, it is necessary to add an entraining agent to break the azeotrope. Benzene is an effective entrainer and is used where the product is not required for food products. Three columns are used in the benzene process. [Pg.229]

Water-dioxane solutions form a minimum-boiling-point azeotrope at atmospheric pressure and cannot be separated by ordinary distillation methods. Benzene forms no azeotrope with dioxane and can be used as an extraction solvent. At 298 K the equilibrium distribution of dioxane between water and benzene is as follows (Treybal, 1980) ... [Pg.471]

At z in the curve, however (the minimum of vapour pressure), the solution and vapour are in equilibrium and the liquid at this point will distil without any change in composition. The mixture at z is said to be azeotropic or a constant boiling mixture. The composition of the azeotropic mixture does vary with pressure. [Pg.48]

The breaking up of azeotropic mixtures. The behaviour of constant boiling point mixtures simulates that of a pure compound, because the composition of the liquid phase is identical with that of the vapour phase. The composition, however, depends upon the pressure at which the distillation is conducted and also rarely corresponds to stoichiometric proportions. The methods adopted in practice will of necessity depend upon the nature of the components of the binary azeotropic mixture, and include —... [Pg.12]

Nitromethane is a very common material. Just go down to your local drag strip and pick up a gallon or two for doping your high performance cars fuel. It s also available up to 40% pure in RC model fuels. Simply fractionally distill the nitromethane (bp 101°C) out of the model fuel mixture and you re ready to go. If methanol Is present in the fuel formulation, some will azeotropically distill over with the nitromethane lowering its boiling point slightly, but this does not present a problem. [Pg.105]

An azeotropic mixture con tains two or more substances that distill together at a con stant boiling point The benzene-water azeotrope contains 9% water and boils at 69 C... [Pg.638]

The principle of azeotropic distillation depends on the abiHty of a chemically dissimilar compound to cause one or both components of a mixture to boil at a temperature other than the one expected. Thus, the addition of a nonindigenous component forms an azeotropic mixture with one of the components of the mixture, thereby lowering the boiling point and faciHtating separation by distillation. The separation of components of similar volatiHty may become economical if an entrainer can be found that effectively changes the relative volatiHty. It is also desirable that the entrainer be reasonably cheap, stable, nontoxic, and readily recoverable from the components. In practice, it is probably the ready recoverabiHty that limits the appHcation of extractive and azeotropic distillation. [Pg.202]

The majority of successful processes are those in which the entrainer and one of the components separate into two Hquid phases on cooling if direct recovery by distillation is not feasible. A further restriction in the selection of an azeotropic entrainer is that the boiling point of the entrainer is 10—40°C below that of the components. [Pg.202]

The more stmcturaHy, chemically similar components are, the less likely that the separation will be improved by azeotropic distillation (if an MSA-key component azeotrope is being used to alter the RCM) any azeotropes formed between one component and another similar component tend to have similar boiling points, compositions. [Pg.451]

As a starting point for identifying candidate solvents, all compounds having boiling points below that of any component in the mixture to be separated should be eliminated. This is necessary to yield the correct residue curve map for extractive distillation, but this process implicitly rules out other forms of homogeneous azeotropic distillation. In fact, compounds which boil as much as 50°C or more above the mixture have been recommended (68) in order to minimize the likelihood of azeotrope formation. On the other hand, the solvent should not bod so high that excessive temperatures are required in the solvent recovery column. [Pg.189]

Azeotropic distillation. In some cases two or more liquids form constant-boiling mixtures, or azeotropes. Azeotropic mixtures are most likely to be found with components which readily form hydrogen bonds or are otherwise highly associated, especially when the components are dissimilar, for example an alcohol and an aromatic hydrocarbon, but have similar boiling points. [Pg.13]

An important system in distillation is an azeotropic mixture. An azeotrope is a liquid mixture which when vaporized, produces the same composition as the liquid. The VLE plots illustrated in Figure 11 show two different azeotropic systems one with a minimum boiling point and one with a maximum boiling point. In both plots, the equilibrium curves cross the diagonal lines. [Pg.173]

As mentioned earlier the ease or difficulty of separating two products depends on the difference in their vapor pressures or volatilities. There are situations in the refining industry in which it is desirable to recover a single valuable compound in high purity from a mixture with other hydrocarbons which have boiling points so close to the more valuable product that separation by conventional distillation is a practical impossibility. Two techniques which may be applied to these situations are azeotropic distillation and extractive distillation. Both methods depend upon the addition to the system of a third component which increases the relative volatility of the constituents to be separated. [Pg.83]


See other pages where Boiling points azeotropic distillation is mentioned: [Pg.210]    [Pg.64]    [Pg.4]    [Pg.292]    [Pg.114]    [Pg.935]    [Pg.759]    [Pg.761]    [Pg.785]    [Pg.2601]    [Pg.47]    [Pg.171]    [Pg.9]    [Pg.12]    [Pg.102]    [Pg.179]    [Pg.219]    [Pg.309]    [Pg.182]    [Pg.182]    [Pg.186]    [Pg.376]    [Pg.1296]    [Pg.1322]    [Pg.19]    [Pg.429]    [Pg.212]    [Pg.239]    [Pg.485]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Azeotrope distillation

Azeotropic distillation

Azeotropic distillation azeotropes

Azeotropic point

Distillation azeotropes

Distillation boiling point

© 2024 chempedia.info