Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase transitions boiling

Helium Purification and Liquefaction. HeHum, which is the lowest-boiling gas, has only 1 degree K difference between its normal boiling point (4.2 K) and its critical temperature (5.2 K), and has no classical triple point (26,27). It exhibits a phase transition at its lambda line (miming from 2.18 K at 5.03 kPa (0.73 psia) to 1.76 K at 3.01 MPa (437 psia)) below which it exhibits superfluid properties (27). [Pg.333]

Figure 4.4 Heat capacity of N as a function of temperature. A solid phase transition occurs at 35.62 K, the melting temperature is 63.15 K, and the normal boiling temperature is 77.33 K. Figure 4.4 Heat capacity of N as a function of temperature. A solid phase transition occurs at 35.62 K, the melting temperature is 63.15 K, and the normal boiling temperature is 77.33 K.
Figure 4.7 Heat capacity and phase transitions in phosphine. The same entropy at point (a) is obtained by going the stable (lower) route or by going the metastable (upper) route. Point (b) is the normal boiling temperature. Figure 4.7 Heat capacity and phase transitions in phosphine. The same entropy at point (a) is obtained by going the stable (lower) route or by going the metastable (upper) route. Point (b) is the normal boiling temperature.
Elevation of boiling point and depression of freezing point of the solution. Within certain limits, the change in temperature of these phase transitions obeys the eqnation... [Pg.100]

The sample temperature is increased in a linear fashion, while the property in question is evaluated on a continuous basis. These methods are used to characterize compound purity, polymorphism, solvation, degradation, and excipient compatibility [41], Thermal analysis methods are normally used to monitor endothermic processes (melting, boiling, sublimation, vaporization, desolvation, solid-solid phase transitions, and chemical degradation) as well as exothermic processes (crystallization and oxidative decomposition). Thermal methods can be extremely useful in preformulation studies, since the carefully planned studies can be used to indicate the existence of possible drug-excipient interactions in a prototype formulation [7]. [Pg.17]

Measurements of thermal analysis are conducted for the purpose of evaluating the physical and chemical changes that may take place in a heated sample. This requires that the operator interpret the observed events in a thermogram in terms of plausible reaction processes. The reactions normally monitored can be endothermic (melting, boiling, sublimation, vaporization, desolvation, solid-solid phase transitions, chemical degradation, etc.) or exothermic (crystallization, oxidative decomposition, etc.) in nature. [Pg.224]

Liquefied material stored under pressure Rapid phase transition (boiling-liquidexpanding-vapor explosion or BLEVE)... [Pg.26]

The GIPF technique has been used to establish quantitative representations of more than 20 liquid, solid and solution properties,31 34 including boiling points and critical constants, heats of phase transitions, surface tensions, enzyme inhibition, liquid and solid densities, etc. Our focus here shall be only upon those that involve solute-solvent interactions. [Pg.27]

A corollary is the question of how many individuals it takes to form a collectivity and to display the collective properties how many molecules of water to have a boiling point, how many atoms to form a metal, how many components to display a phase transition Or, how do boiling point, metallic properties, phase transition etc. depend on and vary with the number of components and the nature of their interac-tion(s) In principle any finite number of components leads to a collective behavior that is only an approximation, however dose it may well be, an asymptotic approach to the true value of a given property for an infinite number of units. [Pg.4]

Events of this nature have been described by various terms, e.g., rapid phase transitions (RPTs), vapor explosions, explosive boiling, thermal explosions, and fuel-coolant interactions (FCIs). They have been reported in a number of industrial operations, e.g., when water contacts molten metal, molten salts, or cryogenic liquids such as liquefied natural gas (LNG). In the first two examples noted above, water is the more volatile liquid and explosively boils whereas, in the last example, the cryogenic liquid plays the role of the volatile boiling liquid and water is then the hot fluid. [Pg.106]

Explosive boiling is certainly not the normal event to occur when liquids are heated. Thus, the very rapid vaporization process must be explained by theories other than standard equilibrium models. For example, if two liquids are brought into contact, and one is relatively nonvolatile but at a temperature significantly above the boiling point of the second liquid, an explosive rapid-phase transition sometimes results. Various models have been proposed to describe such transitions. None has been... [Pg.112]

These results stimulated a number of studies, both in industry (Conoco, Esso, Shell Pipeline) and in academia (University of Maryland, M.I.T.). The objective was, primarily, to delineate the mechanism that led to these explosive events. The results of many small-scale experiments, primarily conducted by Shell Pipeline Corporation and M.I.T., led to the hypothesis that the apparent explosion was, in fact, a very rapid vaporization of superheated LNG. Contact of LNG, of an appropriate composition, with water led to the heating of a thin film of the LNG well above its expected boiling temperature. If the temperature reached a value where homogeneous nucleation was possible, then prompt, essentially explosive vaporization resulted. This sequence of events has been termed a rapid phase transition (RPT), although in the earlier literature it was often described by the less appropriate title of vapor explosion. [Pg.114]

A thermal explosion is the metal industry s term for explosive boiling or rapid-phase transition. ... [Pg.159]

Melting-point temperature Decomposition temperature Boiling-point temperature Crystalline particles or polymers Phase transition Shape of crystal Shock sensitivity Friction sensitivity... [Pg.289]

Noncovalent interactions are primarily electrostatic in namre and thus can be interpreted and predicted via V (r). For this purpose, it is commonly evaluated on the surfaces of the molecules, since it is through these surface potentials, labeled VsCr), that the molecules see and feel each other. We have shown that a number of condensed-phase physical properties that are governed by noncovalent interactions—heats of phase transitions, solubilities, boiling points and critical constants, viscosities, surface tensions, diffusion constants etc.—can be expressed analytically in terms of certain statistical quantities that characterize the patterns of positive and negative regions of Vs(r) . [Pg.7]

Application of the ignition stimulus (such as a spark or flame) initiates a complex sequence of events in the composition. The solid components may undergo crystalline phase transitions, melting, boiling, and decomposition. Liquid and vapor phases may be formed, and a chemical reaction will eventually occur at the surface... [Pg.163]

Some physical properties of water are shown in Table 7.2. Water has higher melting and boiling temperatures, surface tension, dielectric constant, heat capacity, thermal conductivity and heats of phase transition than similar molecules (Table 7.3). Water has a lower density than would be expected from comparison with the above molecules and has the unusual property of expansion on solidification. The thermal conductivity of ice is approximately four times greater than that of water at the same temperature and is high compared with other non-metallic solids. Likewise, the thermal dif-fusivity of ice is about nine times greater than that of water. [Pg.213]


See other pages where Phase transitions boiling is mentioned: [Pg.610]    [Pg.325]    [Pg.755]    [Pg.342]    [Pg.177]    [Pg.84]    [Pg.160]    [Pg.427]    [Pg.510]    [Pg.79]    [Pg.49]    [Pg.250]    [Pg.228]    [Pg.8]    [Pg.12]    [Pg.13]    [Pg.252]    [Pg.35]    [Pg.439]    [Pg.85]    [Pg.121]    [Pg.202]    [Pg.326]    [Pg.470]    [Pg.142]    [Pg.863]    [Pg.151]    [Pg.48]   
See also in sourсe #XX -- [ Pg.151 ]




SEARCH



Boiling point phase transition

Phase boiling

© 2024 chempedia.info