Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bohr period

For nearly half a century, Mendeleev s periodic table remained an empirical compilation of the relationship of the elements. Only after the first atomic model was developed by the physicists of the early twentieth century, which took form in Bohr s model, was it possible to reconcile the involved general concepts with the specificity of the chemical elements. Bohr indeed expanded Rutherford s model of the atom, which tried to connect the chemical specificity of the elements grouped in Mendeleev s table with the behavior of electrons spinning around the nucleus. Bohr hit upon the idea that Mendeleev s periodicity could... [Pg.31]

Chemists were quick to appreciate Bohr s model because it provided an extremely clear and simple interpretation of chemistry. It explained the reason behind Mendeleev s table, that the position of each element in the table is nothing other than the number of electrons in the atom of the element, which, of course, represents an equal number of periodic changes in the nucleus. Each subsequent atom has one more electron, and the periodic valence changes reflect the successive filling of the orbital. Bohr s model also provided a simple basis for the electronic theory of valence. [Pg.32]

The concept of chemical periodicity is central to the study of inorganic chemistry. No other generalization rivals the periodic table of the elements in its ability to systematize and rationalize known chemical facts or to predict new ones and suggest fruitful areas for further study. Chemical periodicity and the periodic table now find their natural interpretation in the detailed electronic structure of the atom indeed, they played a major role at the turn of the century in elucidating the mysterious phenomena of radioactivity and the quantum effects which led ultimately to Bohr s theory of the hydrogen atom. Because of this central position it is perhaps not surprising that innumerable articles and books have been written on the subject since the seminal papers by Mendeleev in 1869, and some 700 forms of the periodic table (classified into 146 different types or subtypes) have been proposed. A brief historical survey of these developments is summarized in the Panel opposite. [Pg.20]

N, Bohr explained the form of the periodic table on the basis of his theory of atomic stnicture and showed that... [Pg.21]

In this paper, the electronic structure of disordered Cu-Zn alloys are studied by calculations on models with Cu and Zn atoms distributed randomly on the sites of fee and bcc lattices. Concentrations of 10%, 25%, 50%, 75%, and 90% are used. The lattice spacings are the same for all the bcc models, 5.5 Bohr radii, and for all the fee models, 6.9 Bohr radii. With these lattice constants, the atomic volumes of the atoms are essentially the same in the two different crystal structures. Most of the bcc models contain 432 atoms and the fee models contain 500 atoms. These clusters are periodically reproduced to fill all space. Some of these calculations have been described previously. The test that is used to demonstrate that these clusters are large enough to be self-averaging is to repeat selected calculations with models that have the same concentration but a completely different arrangement of Cu and Zn atoms. We found differences that are quite small, and will be specified below in the discussions of specific properties. [Pg.4]

In 1938 Niels Bohr had brought the astounding news from Europe that the radiochemists Otto Hahn and Fritz Strassmann in Berlin had conclusively demonstrated that one of the products of the bom-bardmeiit of uranium by neutrons was barium, with atomic number 56, in the middle of the periodic table of elements. He also announced that in Stockholm Lise Meitner and her nephew Otto Frisch had proposed a theory to explain what they called nuclear fission, the splitting of a uranium nucleus under neutron bombardment into two pieces, each with a mass roughly equal to half the mass of the uranium nucleus. The products of Fermi s neutron bombardment of uranium back in Rome had therefore not been transuranic elements, but radioactive isotopes of known elements from the middle of the periodic table. [Pg.499]

For the purposes of fixing the stationary states we have up to this point only considered simply or multiply periodic systems. However the general solution of the equations frequently yield motions of a more complicated character. In such a case the considerations previously discussed are not consistent with the existence and stability of stationary states whose energy is fixed with the same exactness as in multiply periodic systems. But now in order to give an account of the properties of the elements, we are forced to assume that the atoms, in the absence of external forces at any rate always possess sharp stationary states, although the general solution of the equations of motion for the atoms with several electrons exhibits no simple periodic properties of the type mentioned (Bohr [1923]). [Pg.21]

It is now known that the view of electrons in individual well-defined quantum states represents an approximation. The new quantum mechanics formulated in 1926 shows unambiguously that this model is strictly incorrect. The field of chemistry continues to adhere to the model, however. Pauli s scheme and the view that each electron is in a stationary state are the basis of the current approach to chemistry teaching and the electronic account of the periodic table. The fact that Pauli unwittingly contributed to the retention of the orbital model, albeit in modified form, is somewhat paradoxical in view of his frequent criticism of the older Bohr orbits model. For example Pauli writes,... [Pg.26]

Pauli s contribution can only be said to explain the closing of the periods if the correct order of filling is assumed, as indeed it was, in the early electronic versions of the periodic table compiled by Bohr and others. But this order of filling was obtained by reference to experimental facts, especially the spectroscopic characteristics of each of the elements (3),... [Pg.43]

The energy rule for the neutral atoms was obviously in contradiction to Bohr s calculation on the hydrogen atom, which indicated that the energies should be increasing with increasing n. It is typical of the nature of "frontier-research" that Bohr abandoned this rule for the higher atoms, since it led to the wrong structure of the periodic system, and the modified rule [(n + , n)] seems to have... [Pg.135]

Only with Bohr s 1913-1923 introduction of the "old quantum theory" (itself strongly inspired by chemical periodicity patterns vide infra) and the final discovery of Schrodinger s wave mechanics in 1925 would the periodic table be supplanted as the deepest expression of current chemical understanding ([21], p 2). [Pg.136]

The problem is this the third row of the periodic table contains 8, not 18, electrons. It turns out that while quantum numbers provide a satisfying deductive explanation of tbe total number of electrons that any shell can hold, the correspondence of tliese values with the number of elements that occur in any particular period is something of a coincidence. The familiar sequence In which the s, p, d, and f orbitals are filled (see diagram, left) has essentially been determined by empirical means. Indeed. Bohr s failure to derive the order for the filling of the orbitals has been described by some as one of the outstanding problems of quantum mechanics. [Pg.146]

Classifying the elements by physical and chemical characteristics enabled scientists to assemble periodic tables long before their electron configurations were known. In fact, the first periodic table came before J.J. Thomson discovered the electron and long before Bohr developed electron configurations. [Pg.62]

The shells play a leading role in the structure of the Periodic Table. This graphic representation is borrowed from the Bohr atomic model. Historically, the shells were assigned letters, nowadays... [Pg.112]

Appendix 1 also shows how the periodic table of the elements (Appendix 5) can be built up from the known rules for filling up the various electron energy levels. The Bohr model shows that electrons can only occupy orbitals whose energy is fixed (quantized), and that each atom is characterized by a particular set of energy levels. These energy levels differ in detail between atoms of... [Pg.20]

However, in the sodium atom, An = 0 is also allowed. Thus the 3s —> 3p transition is allowed, although the 3s —> 4s is forbidden, since in this case A/ = 0 and is forbidden. Taken together, the Bohr model of quantized electron orbitals, the selection rules, and the relationship between wavelength and energy derived from particle-wave duality are sufficient to explain the major features of the emission spectra of all elements. For the heavier elements in the periodic table, the absorption and emission spectra can be extremely complicated - manganese and iron, for example, have about 4600 lines in the visible and UV region of the spectrum. [Pg.285]

Bohr clearly distinguished chemical properties due to outer electrons from radioactivity due to the interior of the atom, substituting the notion of "shells" and "subshells" of electrons for the earlier idea of "orbits" or circles and relating the filling of these shells to properties of groups within the periodic table. 135 The full import of this paper was not appreciated until after the war, by which time Bohr had changed his mind about some aspects of the theory. [Pg.154]

Niels Bohr s 1913 hydrogen atom paper demonstrates the traditional interest of some physicists in placing the facts and laws of chemistry within a broader framework of foundational principles laid out by physicists. During the course of the next two decades, a number of physicists who became known as quantum physicists developed physical theories and mathematical techniques that they claimed would create a mathematical and theoretical chemistry. However, few of them had much chemical knowledge beyond a general understanding of the periodic table of the elements and familiarity with the Lewis-Langmuir theory of the electron duplet and octet. [Pg.243]


See other pages where Bohr period is mentioned: [Pg.225]    [Pg.309]    [Pg.225]    [Pg.309]    [Pg.43]    [Pg.158]    [Pg.1228]    [Pg.9]    [Pg.268]    [Pg.1]    [Pg.8]    [Pg.13]    [Pg.19]    [Pg.21]    [Pg.22]    [Pg.25]    [Pg.37]    [Pg.37]    [Pg.38]    [Pg.38]    [Pg.39]    [Pg.91]    [Pg.146]    [Pg.49]    [Pg.86]    [Pg.87]    [Pg.133]    [Pg.21]    [Pg.230]    [Pg.239]    [Pg.154]    [Pg.196]    [Pg.197]    [Pg.246]   
See also in sourсe #XX -- [ Pg.143 , Pg.271 , Pg.275 , Pg.276 , Pg.317 ]




SEARCH



Bohrs

© 2024 chempedia.info