Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymer micelles between

Selected examples of block copolymer micelles in both aqueous and organic media will then be presented in Sects. 3 and 4. Section 4.3 emphasizes stimulus-responsive micellar systems from double-hydrophilic block copolymers. Prediction of the dimensional characteristic features of block copolymer micelles and how it varies with the composition of the copolymers will be shortly outlined in Sect. 5, with a consideration of both the theoretical and experimental approaches. Tuning of micellar morphology and triggering transitions between different morphologies will then be discussed in Sect. 6. [Pg.81]

The more recently developed cryo-TEM technique has started to be used with increasing frequency for block copolymer micelle characterization in aqueous solution, as illustrated by the reports of Esselink and coworkers [49], Lam et al. [50], and Talmon et al. [51]. It has the advantage that it allows for direct observation of micelles in a glassy water phase and accordingly determines the characteristic dimensions of both the core and swollen corona provided that a sufficient electronic contrast is observed between these two domains. Very recent studies on core-shell structure in block copolymer micelles as visualized by the cryo-TEM technique have been reported by Talmon et al. [52] and Forster and coworkers [53]. In a very recent investigation, cryo-TEM was used to characterize aqueous micelles from metallosupramolecular copolymers (see Sect. 7.5 for further details) containing PS and PEO blocks. The results were compared to the covalent PS-PEO counterpart [54]. Figure 5 shows a typical cryo-TEM picture of both types of micelles. [Pg.90]

Exchange of unimers between two different types of block copolymer micelles has often been referred to as hybridization. This situation is more complex than for the case described above because thermodynamic parameters now come into play in addition to the kinetic ones. A typical example of such hybridization is related to the mixing of micelles formed by two different copolymers of the same chemical nature but with different composition and/or length for the constituent blocks. Tuzar et al. [41] studied the mixing of PS-PMAA micelles with different sizes in water-dioxane mixtures by sedimentation velocity measurements. These authors concluded that the different chains were mixing with time, the driving force being to reach the maximum entropy. [Pg.94]

Fig. 9 Schematic representation of three approaches to generate nanoporous and meso-porous materials with block copolymers, a Block copolymer micelle templating for mesoporous inorganic materials. Block copolymer micelles form a hexagonal array. Silicate species then occupy the spaces between the cylinders. The final removal of micelle template leaves hollow cylinders, b Block copolymer matrix for nanoporous materials. Block copolymers form hexagonal cylinder phase in bulk or thin film state. Subsequent crosslinking fixes the matrix hollow channels are generated by removing the minor phase, c Rod-coil block copolymer for microporous materials. Solution-cast micellar films consisted of multilayers of hexagonally ordered arrays of spherical holes. (Adapted from [33])... Fig. 9 Schematic representation of three approaches to generate nanoporous and meso-porous materials with block copolymers, a Block copolymer micelle templating for mesoporous inorganic materials. Block copolymer micelles form a hexagonal array. Silicate species then occupy the spaces between the cylinders. The final removal of micelle template leaves hollow cylinders, b Block copolymer matrix for nanoporous materials. Block copolymers form hexagonal cylinder phase in bulk or thin film state. Subsequent crosslinking fixes the matrix hollow channels are generated by removing the minor phase, c Rod-coil block copolymer for microporous materials. Solution-cast micellar films consisted of multilayers of hexagonally ordered arrays of spherical holes. (Adapted from [33])...
In addition to the hydrophobic interaction mentioned above to encapsulate guest molecules, other types of nonspecific interactions have also been explored to enhance binding. For example, block copolymer micelles based on PEO as hydrophilic segments and poly(/3-benzyl L-aspartate) as hydrophobic blocks have used to encapsulate doxombicin. The encapsulation efficiency of doxombicin, an aromatic anticancer drug molecule, has been found to be significantly higher. This observation has been attributed to the tt-tt interaction between the anthracycUne moiety of doxorubicin and the benzyl group of poly(/3-benzyl L-aspartate) (Cammas-Marion et al. 1999). [Pg.14]

In addition to its major use in determining the number-average molecular weight (Ma) of polymers, osmometry has also been used to determine M of block copolymer micelles. The method involves determining the osmotic pressure (77) across a membrane that is permeable to solvent only. Because osmotic pressure is a colligative property, it depends on the number of particles, and hence yields Ma. It also depends on the interactions between particles, and thus... [Pg.12]

Micelles are formed by association of molecules in a selective solvent above a critical micelle concentration (one). Since micelles are a thermodynamically stable system at equilibrium, it has been suggested (Chu and Zhou 1996) that association is a more appropriate term than aggregation, which usually refers to the non-equilibrium growth of colloidal particles into clusters. There are two possible models for the association of molecules into micelles (Elias 1972,1973 Tuzar and Kratochvil 1976). In the first, termed open association, there is a continuous distribution of micelles containing 1,2,3,..., n molecules, with an associated continuous series of equilibrium constants. However, the model of open association does not lead to a cmc. Since a cmc is observed for block copolymer micelles, the model of closed association is applicable. However, as pointed out by Elias (1973), the cmc does not correspond to a thermodynamic property of the system, it can simply be defined phenomenologically as the concentration at which a sufficient number of micelles is formed to be detected by a given method. Thermodynamically, closed association corresponds to an equilibrium between molecules (unimers), A, and micelles, Ap, containingp molecules ... [Pg.133]

Computer simulations of a range of properties of block copolymer micelles have been performed by Mattice and co-workers.These simulations have been based on bead models for copolymer chains on a cubic lattice. Types of allowed moves for bead chains are illustrated in Fig. 3.27. The formation of micelles by diblock copolymers under weak segregation conditions was simulated with pairwise interactions between A and B beads and between the A bead and vacant sites occupied by solvent, S (Wang et al. 19936). This leads to the formation of micelles with a B core. The cmc was found to depend strongly on fVB and % = x.w = %AS. In the range 3 < (xlz)N < 6, where z is the lattice constant, the cmc was found to be exponentially dependent onIt was found than in the micelles the insoluble block is slightly collapsed, and that the soluble block becomes stretched as Na increases, with [Pg.178]

The ordering of block copolymer micelles onto a lattice was considered by Leibler and Pincus (1984). They considered the interaction between a pair of micelles in homopolymer solvent and determined the repulsive interaction energy that arises from the change in homopolymer concentration in the micellar corona and related entropic effects. Using the estimated volume fraction for... [Pg.373]

Colloid characterization is not the classical application of Th-FFF. Nevertheless, Th-FFF was first applied to silica particles suspended in toluene testing a correlation between thermal diffusion and thermal conductivity [397]. Although a weak retention was achieved, no further studies were carried out until the work of Liu and Giddings [398] who fractionated polystyrene latex beads ranging from 90 to 430 nm in acetonitrile applying a low AT of only 17 K. More recently, polystyrene and polybutadiene latexes with particle sizes between 50 pm and 10 pm were also fractionated in aqueous suspensions despite the weak thermal diffusion [215] (see Fig. 30). Th-FFF is also sensitive to the surface composition of colloids (see the work on block copolymer micelles), recent effort in this area has been devoted to analyzing surfaces of colloidal particles [399,400]. [Pg.154]

Weak physical gels have reversible links formed from temporary associations between chains. These associations have finite lifetimes, breaking and reforming continuously. Examples of weak physical bonds are hydrogen bonds, block copolymer micelles above their glass transition, and ionic associations (Fig. 6.4). Such reversible gels are never truly solids but if the association lifetime is sufficiently tong they can appear to be solids on... [Pg.200]

Recently, a versatile class of poly(ethylene propylene)/poly(ethylene oxide) block copolymer micelles were introduced they were stable due to a combination of high block incompatibility, kinetically frozen core, and high interfacial tension between core and solvent [53, 58]. Moreover, by using a co-solvent of varying composition, the aggregation number was controlled and soft spheres from star-like to micelle-like could be obtained. Another way is core stabilization via chemical crosslinking, say by UV radiation [59-64]. [Pg.10]


See other pages where Block copolymer micelles between is mentioned: [Pg.222]    [Pg.91]    [Pg.93]    [Pg.109]    [Pg.134]    [Pg.14]    [Pg.15]    [Pg.16]    [Pg.134]    [Pg.150]    [Pg.164]    [Pg.165]    [Pg.174]    [Pg.174]    [Pg.176]    [Pg.188]    [Pg.405]    [Pg.315]    [Pg.158]    [Pg.79]    [Pg.81]    [Pg.97]    [Pg.122]    [Pg.144]    [Pg.183]    [Pg.188]    [Pg.128]    [Pg.497]    [Pg.141]    [Pg.381]    [Pg.383]    [Pg.115]    [Pg.1]    [Pg.7]    [Pg.7]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Block copolymer micellization

Block micellization

Copolymer micelle

© 2024 chempedia.info