Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Birefringence types

Bulk potassium niobate (KNbOs) is well suited to our needs, beeause birefringent type-I non-critical phasematehing (NCPM) can be exploited for highly efficient SHG of 850 nm at room temperature . This NCPM avoids any spatial waUc-off between the fundamental and second harmonic beams, as well as maximizing the angular acceptance of the phasematching process. [Pg.213]

Electro-Optic Properties of Polymer Stabilized Liquid Crystals. Polymer networks have been used to stabilize many of the liquid crystal display states in various types of displays quite advantageously. In this section, we present some recent work on correlating the material properties of the liquid crystal/polymer network composite to the electro-optic properties of the flat-panel displays specifically cholesteric texture displays (75) and simple nematic birefringent type displays (7(5). [Pg.529]

Venus probe. References should be consulted for the details of the optical transparency of the different type diamonds (9,14,16—19). The direct band gap for diamond is 5.47 eV. Natural diamond exhibits many colors, and color modification by irradiation and annealing is common (36). Though cubic, most natural diamonds show strain birefringence under crossed polaroids. [Pg.559]

An interesting feature of polarized IR spectroscopy is that rapid measurements can be performed while preserving molecular information (in contrast with birefringence) and without the need for a synchrotron source (X-ray diffraction). Time-resolved IRLD studies are almost exclusively realized in transmission because of its compatibility with various types of tensile testing devices. In the simplest implementation, p- and s-polarized spectra are sequentially acquired while the sample is deformed and/or relaxing. The time resolution is generally limited to several seconds per spectrum by the acquisition time of two spectra and by the speed at which the polarizer can be rotated. Siesler et al. have used such a rheo-optical technique to study the dynamics of multiple polymers and copolymers [40]. [Pg.312]

Such curves, illustrated in Figure 7, show no deviations from linearity which could be attributed to strain-induced crystallization. Similarly, birefringence-temperature measurements also carried out at a > au show no deviations from linearity that could be attributed to crystallization, or to other inter-molecular orderings of the network chains. Typical results of this type are shown in Figure 8 (16),... [Pg.358]

However, further analysis of the behavior of the system in LC cells cast doubt on this interpretation. First, while intuitively attractive, the idea that relaxation of the polarization by formation of a helielectric structure of the type shown in Figure 8.20 would lower the free energy of the system is not correct. Also, in a thermodynamic helical LC phase the pitch is extremely uniform. The stripes in a cholesteric fingerprint texture are, for example, uniform in spacing, while the stripes in the B2 texture seem quite nonuniform in comparison. Finally, the helical SmAPF hypothesis predicts that the helical stripe texture should have a smaller birefringence than the uniform texture. Examination of the optics of the system show that in fact the stripe texture has the higher birefringence. [Pg.493]

Birefringence (or double refraction) is the decomposition of a light ray into two rays when it passes through certain types of crystalline material. This occurs only when the material is anisotropic, that is, the material has different characteristics in different directions. Amylose and amylopectin polymers are organized into a radially anisotropic, semicrystalline unit in the starch granule. This radial anisotropy is responsible for the distinctive... [Pg.226]

However, if an LC substance is heated, it will show more than one melting point. Thus, liquid crystals are substances that exhibit a phase of matter that has properties between those of a conventional liquid and a solid crystal. For instance, an LC may flow like a liquid but have the molecules in the liquid arranged and/or oriented in a crystal-like way. There are many different types of LC phases that can be distinguished based on their different optical properties (such as birefringence). When viewed under a microscope using a polarized light source, different liquid crystal phases will appear to have a distinct texture. Each patch in the texture corresponds to a domain where the LC molecules are oriented in a different direction. Within a domain, however, the molecules are well ordered. Liquid crystal materials may not always be in an LC phase (just as water is not always in the liquid phase it may also be found in the solid or gas phase). [Pg.187]

If one follows the solution viscosity in concentrated sulfuric acid with increasing polymer concentration, then one observes first a rise, afterwards, however, an abrupt decrease (about 5 to 15%, depending on the type of polymers and the experimental conditions). This transition is identical with the transformation of an optical isotropic to an optical anisotropic liquid crystalline solution with nematic behavior. Such solutions in the state of rest are weakly clouded and become opalescent when they are stirred they show birefringence, i.e., they depolarize linear polarized light. The two phases, formed at the critical concentration, can be separated by centrifugation to an isotropic and an anisotropic phase. A high amount of anisotropic phase is desirable for the fiber properties. This can be obtained by variation of the molecular weight, the solvent, the temperature, and the polymer concentration. [Pg.288]

Three common types of electrooptic effects are illustrated in Figure 8 i.e, quadratic and linear birefringence and memory scattering. Also included in the figure is a typical setup required for generating each effect along with the observed behavior shown in terms of light intensity output (I) as a function of electric field (E). [Pg.273]

A second type of behavior existing in the PLZT s is the linear (Pockels) effect which is generally found in high coercive field, tetragonal materials (composition 3), This effect is so named because of the linear relationship between An and electric field. The truly linear, nonhysteretic character of this effect has been found to be intrinsic to the material and not due to domain reorientation processes which occur in the quadratic and memory materials. The linear materials possess permanent remanent polarization however, in this case the material is switched to its saturation remanence, and it remains in that state. Optical information is extracted from the ceramic by the action of an electric field which causes linear changes in the birefringence, but in no case is there polarization reversal in the material. [Pg.273]

During the studies of phase behaviour two types of liquid crystalline phases were identified. LC material was viscous and exhibited intense "white" birefingence. material was apparently homogeneous but of low viscosity and exhibited "multi-coloured" birefringence. The liquid crystalline phases observed in the equilibrium studies of surfactant concentrations up to 25 are unlikely to take part in the self-emulsification process due to the presence of two-phase regions between L2 and liquid crystalline phases however, LC material may account for the improved stability of emulsions formed by 25 surfactant systems (Table II). Figure 4c indicates that by increasing the surfactant concentration to 30 the... [Pg.250]

In contrast, needle-type boehmite particles were covered with silica by decomposition of sodium silicate to produce isotropic birefringent dispersions (I48). [Pg.31]


See other pages where Birefringence types is mentioned: [Pg.827]    [Pg.6]    [Pg.827]    [Pg.6]    [Pg.1970]    [Pg.156]    [Pg.161]    [Pg.192]    [Pg.8]    [Pg.203]    [Pg.340]    [Pg.351]    [Pg.135]    [Pg.222]    [Pg.12]    [Pg.292]    [Pg.274]    [Pg.281]    [Pg.461]    [Pg.334]    [Pg.378]    [Pg.433]    [Pg.492]    [Pg.510]    [Pg.510]    [Pg.320]    [Pg.79]    [Pg.253]    [Pg.124]    [Pg.195]    [Pg.134]    [Pg.95]    [Pg.404]    [Pg.40]    [Pg.235]    [Pg.87]    [Pg.195]    [Pg.407]    [Pg.333]    [Pg.52]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Birefringence

Birefringent

Types of birefringence

© 2024 chempedia.info