Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biotin modification

In another example, ligands can be biotinylated with a cleavable biotinylation reagent and then incubated with receptor molecules. The resulting complex can be isolated by affinity chromatography on immobilized (strept)avidin. Final purification of the ligand-receptor can be accomplished by cleaving the biotin modification sites while the complex is still bound to the support. The receptor complex thus can be eluted from the column without the usual harsh conditions required to break the avidin-biotin interaction. [Pg.391]

Another crosslinker, SAED (Chapter 5, Section 3.9), can be used in a similar fashion, but instead of transferring a radioactive label, it contains a fluorescent portion that is transferred to a binding molecule after cleavage. Similarly, sulfo-SBED routinely is used to study protein interaction. Cleavage of a disulfide bridge after capture of interacting proteins results in transfer of a biotin label to the unknown prey protein (Chapter 28, Section 3.1). The biotin modification then can be used to detect or isolate the unknown interactor for subsequent identification. [Pg.392]

Although NHS-LC-biotin and sulfo-NHS-LC-biotin are very popular reagents for biotinylation, they both result in hydrophobic aliphatic biotin modifications on proteins and antibodies. Unfortunately, these groups have a tendency to aggregate in aqueous solution and may cause protein precipitation or loss of activity over time. For this reason, the use of more hydrophilic PEG-based biotin compounds of approximately the same spacer length may be a better alternative for maintaining water solubility of modified proteins (Chapter 18). [Pg.514]

Figure 17.3 Maleimide-modified glass slides (1) can be derivatized using two chemoselective ligation reactions to create biotin modifications. In the first step, alkyne-PEG4-cyclopentadiene linkers (2) are added to the maleimide groups using a Diels-Alder reaction. In the second reaction, an azido-PEG4-biotin compound (3) is reacted with the terminal alkyne on the slide using click chemistry to result in another cycloaddition product, a triazole ring. Figure 17.3 Maleimide-modified glass slides (1) can be derivatized using two chemoselective ligation reactions to create biotin modifications. In the first step, alkyne-PEG4-cyclopentadiene linkers (2) are added to the maleimide groups using a Diels-Alder reaction. In the second reaction, an azido-PEG4-biotin compound (3) is reacted with the terminal alkyne on the slide using click chemistry to result in another cycloaddition product, a triazole ring.
Biotin modification reagents are widely used to attach a biotin group to proteins or other molecules for subsequent use in avidin, streptavidin, or NeutrAvidin separations or assays. Traditional biotin compounds containing aliphatic or other hydrophobic linker arms are discussed in detail in Chapter 11. In this section, the biotin-PEG compounds exclusively are discussed due to their unique hydrophilic properties, which include low nonspecific binding character and low immunogenicity. [Pg.726]

Another popular tag for use with immunoglobulins is biotin. Modification reagents that can add a functional biotin group to proteins, nucleic acids, and other molecules now come in many shapes and reactivities (Chapter 11). Depending on the reactive group present on the biotinylation... [Pg.821]

However, since many of the traditional biotinylation reagents, such as NHS-LC-biotin contain hydrophobic spacers, their use with amphipathic liposomal constructions may not be entirely appropriate. A better choice may be to use a hydrophilic PEG-based biotin compound that creates a water-soluble biotin modification on the outer aqueous surface of the liposome bilayer. Biotinylation reagents of this type are discussed in Chapter 18, Section 3. [Pg.883]

It is often important to determine the extent of biotin modification after a biotinylation reaction is complete. Measuring biotin incorporation into macromolecules can aid in optimizing a particular (strept)avidin-biotin assay system. It also can be used to assure reproducibility in... [Pg.921]

To measure the response of the biotinylated protein sample, add 3 ml of the (strept)avidin solution plus 75 pi of the HABA dye to a cuvette. Mix well and measure the absorbance of the solution at 500 nm. Next, add a small amount of sample to this solution and mix. Record the absorbance at 500 nm. If the change in absorbance due to sample addition was not sufficient to obtain a significant difference from the initial (strept)avidin-HABA solution, add another portion of sample and measure again. Determine the amount of biotin present in the protein sample by using the standard curve. The number of moles of biotin divided by the moles of protein present gives the number of biotin modifications on each protein molecule. [Pg.923]


See other pages where Biotin modification is mentioned: [Pg.506]    [Pg.507]    [Pg.523]    [Pg.726]    [Pg.922]    [Pg.392]    [Pg.407]    [Pg.512]    [Pg.611]    [Pg.611]    [Pg.677]    [Pg.47]    [Pg.150]    [Pg.372]    [Pg.387]    [Pg.492]    [Pg.591]    [Pg.591]    [Pg.657]   


SEARCH



Biotin-BMCC protein modification protocol

Biotin-Diazonium Modification of DNA

Biotin-HPDP protein modification protocol

Biotin-Hydrazide Modification of Bisulfite-Activated Cytosine Groups

Biotin-hydrazide cytosine modification

Iodoacetyl-LC-biotin protein modification protocol

Modification NHS-LC-biotin

Modification biotin-BMCC

Modification biotin-HPDP

Modification biotin-hydrazide

Modification sulfo-NHS-SS-biotin

Photo-Biotin Modification of DNA

© 2024 chempedia.info