Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biological systems kinetics

In recent years, temperature-jump methods have been used widely in studies of enzymatic and biological electron transfer. These methods seem to be ideally suited for the task owing to the existence of finely balanced, easily perturbed equilibria in biological systems. Kinetic determinations are facilitated by the large molar absorptivities of most metalloenzymes, so that even small concentration changes provide measurable signals. [Pg.483]

In biological systems, kinetic schemes for selectivity augmentation are widespread but are usually built upon highly sophisticated interwoven reaction networks. Naturally, this finding obviates easy adaptation and implementation into abiotic mimicks. though the principles seem clear, and attractive applications to artificial chemical flux systems are readily envisaged. [Pg.1229]

The activity of antioxidants in food [ 1 ] emulsions and in some biological systems [2] is depends on a multitude of factors including the localisation of the antioxidant in the different phases of the system. The aim of this study is determining antioxidant distributions in model food emulsions. For the purpose, we measured electrochemically the rate constant of hexadecylbenzenediazonium tetrafluorborate (16-ArN,BF ) with the antioxidant, and applied the pseudophase kinetic model to interpret the results. [Pg.139]

Ta 1.5 X 10 2, K3 2.1 X 10 and 2.4 x and the corresponding negative logarithms are pA" 1.0, pA"2 1.8, pA"3 6.57 and pA"4 9.62. The P—O—P linkage is kinetically stable towards hydrolysis in dilute neutral solutions at room temperature and the reaction half-life can be of the order of years. Such hydrolytic breakdown of polyphosphate is of considerable importance in certain biological systems and has been much studied. Some factors which affect the rate of degradation of polyphosphates are shown in Table 12.10. [Pg.523]

The field of modified electrodes spans a wide area of novel and promising research. The work dted in this article covers fundamental experimental aspects of electrochemistry such as the rate of electron transfer reactions and charge propagation within threedimensional arrays of redox centers and the distances over which electrons can be transferred in outer sphere redox reactions. Questions of polymer chemistry such as the study of permeability of membranes and the diffusion of ions and neutrals in solvent swollen polymers are accessible by new experimental techniques. There is hope of new solutions of macroscopic as well as microscopic electrochemical phenomena the selective and kinetically facile production of substances at square meters of modified electrodes and the detection of trace levels of substances in wastes or in biological material. Technical applications of electronic devices based on molecular chemistry, even those that mimic biological systems of impulse transmission appear feasible and the construction of organic polymer batteries and color displays is close to industrial use. [Pg.81]

Heterogeneous electron reactions at liquid liquid interfaces occur in many chemical and biological systems. The interfaces between two immiscible solutions in water-nitrobenzene and water 1,2-dichloroethane are broadly used for modeling studies of kinetics of electron transfer between redox couples present in both media. The basic scheme of such a reaction is... [Pg.28]

In Ref. 30, the transfer of tetraethylammonium (TEA ) across nonpolarizable DCE-water interface was used as a model experimental system. No attempt to measure kinetics of the rapid TEA+ transfer was made because of the lack of suitable quantitative theory for IT feedback mode. Such theory must take into account both finite quasirever-sible IT kinetics at the ITIES and a small RG value for the pipette tip. The mass transfer rate for IT experiments by SECM is similar to that for heterogeneous ET measurements, and the standard rate constants of the order of 1 cm/s should be accessible. This technique should be most useful for probing IT rates in biological systems and polymer films. [Pg.398]

In algebraic equation models we also have the special situation of conditionally linear systems which arise quite often in engineering (e.g., chemical kinetic models, biological systems, etc.). In these models some of the parameters enter in a linear fashion, namely, the model is of the form,... [Pg.9]

Studies have been carried out on the methylated complex [H3C-Niin(17)(H20)]2+, which is obtained from the reaction of methyl radicals (generated by pulse radiolysis) with [Ni(17)]2+. The volumes of activation are consistent with the coherent formation of Ni—C and Ni—OH2 bonds, as expected for the generation of a Ni111 complex from a square planar Ni11 precursor.152 The kinetics of reactions of [H3C-Niin(17)(H20)] + involving homolysis, 02 insertion and methyl transfer to Crn(aq) have been determined, and intermediates have been considered relevant as models for biological systems.153 Comparing different alkyl radicals, rate constants for the... [Pg.257]

Fig. 2.7. Characteristic rate constants (s 1) for substitution of inner-sphere H20 of various aqua ions. Note The substitution rates of water in complexes ML(H20)m will also depend on the symmetry of the complex (adapted from Frey, C.M. and Stuehr, J. (1974). Kinetics of metal ion interactions with nucleotides and base free phosphates in H. Sigel (ed.), Metal ions in biological systems (Vol. 1). Marcel Dekker, New York, p. 69). Fig. 2.7. Characteristic rate constants (s 1) for substitution of inner-sphere H20 of various aqua ions. Note The substitution rates of water in complexes ML(H20)m will also depend on the symmetry of the complex (adapted from Frey, C.M. and Stuehr, J. (1974). Kinetics of metal ion interactions with nucleotides and base free phosphates in H. Sigel (ed.), Metal ions in biological systems (Vol. 1). Marcel Dekker, New York, p. 69).
Nowadays, studies of direct electrochemistry of redox proteins at the electrodesolution interface have held more and more scientists interest. Those studies are a convenient and informative means for understanding the kinetics and thermodynamics of biological redox processes. And they may provide a model for the study of the mechanism of electron transfer between enzymes in biological systems, and establish a foundation for fabricating new kinds of biosensors or enzymatic bioreactors. [Pg.560]

While studying the formation kinetics of complexes gives useful mechanistic information about the reactivity of the iron center when bound to a particular siderophore, it is not necessarily a good model for how environmental iron will react in the siderophore system of interest. In biological systems,... [Pg.228]


See other pages where Biological systems kinetics is mentioned: [Pg.132]    [Pg.132]    [Pg.1649]    [Pg.2483]    [Pg.3068]    [Pg.209]    [Pg.433]    [Pg.86]    [Pg.55]    [Pg.450]    [Pg.227]    [Pg.223]    [Pg.143]    [Pg.397]    [Pg.315]    [Pg.124]    [Pg.115]    [Pg.135]    [Pg.262]    [Pg.422]    [Pg.69]    [Pg.103]    [Pg.596]    [Pg.1233]    [Pg.21]    [Pg.332]    [Pg.516]    [Pg.123]    [Pg.88]    [Pg.118]    [Pg.404]    [Pg.72]    [Pg.242]    [Pg.181]    [Pg.228]    [Pg.252]    [Pg.667]    [Pg.1]    [Pg.3]    [Pg.196]   


SEARCH



Biological kinetics

Kinetic analysis complex biological systems

Kinetic system

Kinetics systems

© 2024 chempedia.info