Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Binding interconnection

Heptahelical domains are protein modules found in all known G-protein coupled receptors, made up of seven transmembrane helices interconnected by three extra and three intracellular loops. For most G-protein coupled receptors activated by small ligands, the binding site is located in a cavity formed by transmembrane domains 3, 5, 6 and 7. [Pg.583]

Part 1 of the nitrogenase protein contains another interconnected group of Fe-S atoms, this one with eight iron atoms and seven sulfur atoms. This [8Fe-7S] group collects electrons and transmits them to the binding center. Part 2 of nitrogenase contains a third Fe-S group, this one made up of four iron atoms and four sulfur atoms. This part of the enzyme also binds two molecules of ATP. [Pg.1017]

Covalent cross-linkages usually serve to bind the long chains into a network. The necessary interconnections may, however, be provided by other means, e.g., by small crystalline regions (Morton) or by chelate linkages (Eichinger). [Pg.585]

Schematic representation of Subsite Utilization in Thrombin Complexes (after Reference 8). Fibrinogen interacts with three thrombin subsites (here thrombin is represented by a large oval and the interconnected subsites by an irregular three-armed shape). Physiological effectors of thrombin and thrombin inhibitors form distinct interactions at these subsites. Additional subsites, such as the heparin-binding site, exist on the thrombin surface and are not indicated here. Schematic representation of Subsite Utilization in Thrombin Complexes (after Reference 8). Fibrinogen interacts with three thrombin subsites (here thrombin is represented by a large oval and the interconnected subsites by an irregular three-armed shape). Physiological effectors of thrombin and thrombin inhibitors form distinct interactions at these subsites. Additional subsites, such as the heparin-binding site, exist on the thrombin surface and are not indicated here.
There have been few studies of polymer interconnections within the primary wall of monocots. An arabinoxylan from the primary wall of cultured, barley-aleurone cells,61 and a glucuronoarabinoxylan from maize-coleoptile primary-wall,200 have been shown to bind reversibly to cellulose in vitro, Because xylans are, quantitatively, the major component of monocot primary cell-walls, this interconnection is an important finding it is very likely to occur through multiple hydrogen-bonds, analogous to the interconnection between xyloglucan and cellulose in dicot cell-walls.56,57,59 It is also possible that heteroxylans participate in binding other cell-wall polymers to cellulose. [Pg.314]

Figure 6 is a graphic representation of foam structures in which the microspheres are dispersed randomly (a) and uniformly in close packing (b). In both structures, the two phases fill completely the whole volume (no dispersed air voids) and the density of the product is thus calculated from the relative proportions of the two. Measured density values often differ from the calculated ones, due to the existence of some isolated or interconnected, irregularly shaped voids as shown in Fig. 6c. The voids are usually an incidental part of the composite, as it is not easy to avoid their formation. Nevertheless, voids are often introduced intentionally to reduce the density below the minimum possible in a close-packed two-phase structure. In such three-phase systems the resin matrix is mainly a binding material, holding the structure of the microspheres together. Figure 6 is a graphic representation of foam structures in which the microspheres are dispersed randomly (a) and uniformly in close packing (b). In both structures, the two phases fill completely the whole volume (no dispersed air voids) and the density of the product is thus calculated from the relative proportions of the two. Measured density values often differ from the calculated ones, due to the existence of some isolated or interconnected, irregularly shaped voids as shown in Fig. 6c. The voids are usually an incidental part of the composite, as it is not easy to avoid their formation. Nevertheless, voids are often introduced intentionally to reduce the density below the minimum possible in a close-packed two-phase structure. In such three-phase systems the resin matrix is mainly a binding material, holding the structure of the microspheres together.
Another nice example of nanostructuring an MIP layer is the work published by Wu et al. [138, 139] who developed a label-free optical sensor based on molecularly imprinted photonic polymers. Photonic crystals were prepared by self-assembly of silica nanospheres. The space between the spheres was then filled with MIP precursor solution. After polymerization, the silica was dissolved, leaving an MIP in the form of a 3D-ordered interconnected macroporous inverse polymer opal (Fig. 15). The authors were able to detect traces of the herbicide atrazine at low concentrations in aqueous solution [139]. Analyte adsorption into the binding sites resulted in a change in Bragg diffraction of the polymer characterized by a color modification (Fig. 15). [Pg.106]


See other pages where Binding interconnection is mentioned: [Pg.158]    [Pg.158]    [Pg.1095]    [Pg.1279]    [Pg.458]    [Pg.1017]    [Pg.320]    [Pg.232]    [Pg.266]    [Pg.92]    [Pg.412]    [Pg.393]    [Pg.378]    [Pg.64]    [Pg.182]    [Pg.198]    [Pg.355]    [Pg.285]    [Pg.174]    [Pg.40]    [Pg.253]    [Pg.194]    [Pg.356]    [Pg.250]    [Pg.149]    [Pg.39]    [Pg.99]    [Pg.23]    [Pg.116]    [Pg.48]    [Pg.304]    [Pg.612]    [Pg.253]    [Pg.47]    [Pg.256]    [Pg.272]    [Pg.15]    [Pg.274]    [Pg.3]    [Pg.12]    [Pg.26]    [Pg.94]    [Pg.210]    [Pg.211]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



Interconnect

Interconnected

Interconnections

Interconnects

© 2024 chempedia.info