Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

BET procedure

As will be demonstrated in Chapter 4, an isotherm which is reversible and of Type II is quite compatible with the presence of micropores. If such pores are present, the isotherm will be distorted in the low-pressure region, the value of c will be greatly enhanced, and the specific surface derived by the BET procedure will be erroneously high. In particular, a BET specific surface in excess of - 500m g" should be taken as a warning that... [Pg.103]

The table convincingly demonstrates how the unsuspected presence of micropores can lead to an erroneous value of the specific surface calculated from a Type II isotherm by application of the standard BET procedure. According to the foregoing analysis, the external specific surface of the solid is 114m g" the micropore volume (from the vertical separation of isotherms A and E) is 105 mm g but since the average pore width is not precisely known, the area of the micropore walls cannot be calculated. Thus the BET figure of 360m g calculated from isotherm E represents merely an apparent and not a true surface area. [Pg.214]

Wynne-Jones and Marshfound somewhat similar results with a number of carbons made by pyrolysis of eight organic polymers at a series of temperatures. The isotherms of Nj at 77 K and of COj at 195 K were measured, and the apparent surface area calculated by the usual BET procedure. (Owing to the microporous nature of the solids, these figures for area will be roughly proportional to the uptake at saturation and therefore... [Pg.229]

In applying the BET procedure to Type III isotherms, c = 1 constitutes a special case insertion of c = 1 into the standard BET equation (2.12) leads to the simplified equation... [Pg.255]

One must conclude therefore that the BET procedure for evaluation of monolayer capacity is not applicable to a Type III (nor by implication, to a Type V) isotherm. [Pg.257]

In Table 5.3, is compared with the total hydroxyl concentration (Ni, + N ) of the corresponding fully hydroxylated, sample. The results clearly demonstrate that the physical adsorption is determined by the total hydroxyl content of the surface, showing the adsorption to be localized. It is useful to note that the BET monolayer capacity n JH2O) (= N ) of the water calculated from the water isotherm by the BET procedure corresponds to approximately 1 molecule of water per hydroxyl group, and so provides a convenient means of estimating the hydroxyl concentration on the surface. Since the adsorption is localized, n.(H20) does not, of course, denote a close-packed layer of water molecules. Indeed, the area occupied per molecule of water is determined by the structure of the silica, and is uJH2O) 20A ... [Pg.274]

It would be difficult to over-estimate the extent to which the BET method has contributed to the development of those branches of physical chemistry such as heterogeneous catalysis, adsorption or particle size estimation, which involve finely divided or porous solids in all of these fields the BET surface area is a household phrase. But it is perhaps the very breadth of its scope which has led to a somewhat uncritical application of the method as a kind of infallible yardstick, and to a lack of appreciation of the nature of its basic assumptions or of the circumstances under which it may, or may not, be expected to yield a reliable result. This is particularly true of those solids which contain very fine pores and give rise to Langmuir-type isotherms, for the BET procedure may then give quite erroneous values for the surface area. If the pores are rather larger—tens to hundreds of Angstroms in width—the pore size distribution may be calculated from the adsorption isotherm of a vapour with the aid of the Kelvin equation, and within recent years a number of detailed procedures for carrying out the calculation have been put forward but all too often the limitations on the validity of the results, and the difficulty of interpretation in terms of the actual solid, tend to be insufficiently stressed or even entirely overlooked. And in the time-honoured method for the estimation of surface area from measurements of adsorption from solution, the complications introduced by... [Pg.292]

The intrinsic dissolution rates of pharmaceutical solids may be calculated from the dissolution rate and wetted surface area using Eq. (36) or (37). For powdered solids, two common methods are available the powder intrinsic dissolution rate method, and the disc intrinsic dissolution rate method. In the former method, the initial dissolution rate of one gram of powder is determined by a batch-type procedure as illustrated in Fig. 13A. The initial wetted surface area of one gram of powder is assumed to equal the specific surface area determined by an established dry procedure, such as monolayer gas adsorption by the Brunauer, Emmett, and Teller (BET) procedure [110]. [Pg.358]

The standard BET procedure requires the measurement of at least three and preferably five or more points in the appropriate pressure range on the N2 adsorption isotherm at the normal boiling point of liquid nitrogen. [Pg.527]

The validity of the simplifying assumption is usually within the variance of surface area determinations but needs to be checked for the particular system either by calibration against the standard BET procedure or by using surface area reference samples of the same material (see Section 11.2.1.6.B). [Pg.527]

If the standard BET procedure is to be used, it should be established that monolayer-multilayer formation is operative and is not accompanied by micropore filling (Section 11.2.1.8.C), which is usually associated with an increase in the value of C (>200, say). It should be appreciated that the BET analysis does not take into account the possibility of micropore filling or penetration into cavities of molecular size. These effects can thus falsify the BET surface areas and in case of doubt their absence should be checked by means of an empirical method of isotherm analysis or by using surface area reference samples (see Section 11.2.1.6.B). [Pg.527]

For practical purposes all adsorptions can be classified as one of two types. It can involve merely the van der Waals interaction between the substrate and the catalyst, a process that is termed physical adsorption or physisorption. Alternately, it can involve the formation of catalyst-substrate bonds as discussed above. This is termed chemical adsorption or chemisorption. While the latter is the basis for the chemistry of catalysts, physisorption is the basis for the BET procedure which is commonly used to measure the surface area of solids. ... [Pg.13]

The surface areas of a number of commercial palladium blacks were measured using the BET procedure as well as hydrogen chemisorption, electron microscopy and X-ray diffraction analysis. These data showed that these blacks had particle sizes ranging from about 7 to 140 nm and surface areas between 70 and 4 m2/g.20 Ruthenium blacks prepared by the reduction of different samples of ruthenium oxide and ruthenium chloride were found to have surface areas ranging from 3-20 m2/g.21... [Pg.233]

The pore stmcture was characterized by the high pressure mercury porosimetry (HPM) using an Auto-Pore 9200 machine, and the specific surface area was determined by the routine BET procedure using the Ar thermal desorption data. [Pg.344]


See other pages where BET procedure is mentioned: [Pg.168]    [Pg.238]    [Pg.254]    [Pg.255]    [Pg.273]    [Pg.91]    [Pg.13]    [Pg.14]    [Pg.20]    [Pg.70]    [Pg.111]    [Pg.354]    [Pg.128]    [Pg.91]    [Pg.191]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



BET

Betting

© 2024 chempedia.info