Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Beryllium elemental properties

The chemical properties of an element are determined by the number of electrons surrounding the atomic nucleus. The numbers of these electrons are equal to the numbers of protons in the nucleus. The number of protons in the nucleus is called the atomic number, and is unique for each element. In Problem 2.4(b), we could have called beryllium element number 4 or beryllium. Either is correct, since no other element has 4 and only 4 protons in its nucleus. [Pg.40]

The properties of the head element of a main group in the periodic table resemble those of the second element in the next group. Discuss this diagonal relationship with particular reference to (a) lithium and magnesium, (b) beryllium and aluminium. [Pg.158]

Many elemental additions to copper for strengthening and other properties also deoxidize the alloy. A side benefit of such additions is elimination of susceptibihty to hydrogen embrittlement. Such deoxidizing additions include beryllium, aluminum, siUcon, chromium, zirconium, and magnesium. [Pg.221]

No fewer than 14 pure metals have densities se4.5 Mg (see Table 10.1). Of these, titanium, aluminium and magnesium are in common use as structural materials. Beryllium is difficult to work and is toxic, but it is used in moderate quantities for heat shields and structural members in rockets. Lithium is used as an alloying element in aluminium to lower its density and save weight on airframes. Yttrium has an excellent set of properties and, although scarce, may eventually find applications in the nuclear-powered aircraft project. But the majority are unsuitable for structural use because they are chemically reactive or have low melting points." ... [Pg.100]

Beryllium, at the head of Group 2, resembles its diagonal neighbor aluminum in its chemical properties. It is the least metallic element of the group, and many of its compounds have properties commonly attributed to covalent bonding. Beryllium is amphoteric and reacts with both acids and alkalis. Like aluminum, beryllium reacts with water in the presence of sodium hydroxide the products are the beryl-late ion, Be(OH)42, and hydrogen ... [Pg.714]

Boron, a metalloid with largely nonmetallic properties, has acidic oxides. Aluminum, its metallic neighbor, has amphoteric oxides (like its diagonal neighbor in Group 2, beryllium). The oxides of both elements are important in their own right, as sources of the elements, and as the starting point for the manufacture of other compounds. [Pg.720]

Some physical and chemical properties of the alkaline earth metals are shown in Table II. It can be seen that beryllium is significantly different from the elements below it in the periodic table in most respects. The fact that the density of beryllium is greater than that of magnesium is perhaps surprising, but can be understood by noting that magnesium is both a more massive and a larger atom. The density of beryllium is to be compared to that of iron (7.9 g cm-3), titanium (4.5 g cm-3), and aluminum (2.7 g cm-3). [Pg.115]

Mendeleev arranged the elements into seven groups. Lithium (atomic weight 7) was followed by beryllium (9), boron (11), carbon (12), nitrogen (14), oxygen (16), and fluorine (19). The next element in order of atomic weight was sodium (23), which had properties similar to those of lithium. Therefore, Mendeleev pinned the card for sodium under that for lithium. Six more cards were placed in the second row, ending with chlorine under fluorine. He continued in... [Pg.165]

Metallotropic rearrangement, in mercury tri-azenide complexes, 30 41 Metals, see also Heterobimetallics specific element Transition metal complex alkoxides, 15 159-297 of actinides, 15 290-293 of alkali metals, 15 260-263 of alkaline earths, 15 264-266 of aluminium, 15 266-272 of beryllium, 15 264-266 double type, 15 293-294 of gallium, 15 266-272 of lanthanides, 15 290-293 of magnesium, 15 264-266 properties of, 15 260 of transition metals, 15 272-290 trialkylsilyloxides, 15 295-297 of zinc, 15 264-266... [Pg.177]

The study of coordination compounds of the lanthanides dates in any practical sense from around 1950, the period when ion-exchange methods were successfully applied to the problem of the separation of the individual lanthanides,131-133 a problem which had existed since 1794 when J. Gadolin prepared mixed rare earths from gadolinite, a lanthanide iron beryllium silicate. Until 1950, separation of the pure lanthanides had depended on tedious and inefficient multiple crystallizations or precipitations, which effectively prevented research on the chemical properties of the individual elements through lack of availability. However, well before 1950, many principal features of lanthanide chemistry were clearly recognized, such as the predominant trivalent state with some examples of divalency and tetravalency, ready formation of hydrated ions and their oxy salts, formation of complex halides,134 and the line-like nature of lanthanide spectra.135... [Pg.1068]

Jhe distribution of beryllium, boron, titanium, vanadium, chromium, cobalt, nickel, copper, zinc, gallium, germanium, tin, molybdenum, yttrium, and lanthanum in the principal coal-producing beds of the Interior Province has been studied by the U. S. Geological Survey. Data, methods of sampling, and analyses are discussed by Zubovic and others (II, 12). This chapter discusses the occurrence of 13 of these elements with respect to geological and geochemical environments of coal deposition and chemical properties of the elements. Zinc and tin are not included in this study because they were detected in only a few samples. [Pg.233]

The observed abundance of light elements can be used to deduce some of the properties of cosmic rays, which are fast-moving particles such as electrons and protons. The abundances of elements such as lithium, beryllium, and boron suggest that each proton has to... [Pg.955]

Group II consists of the five metals beryllium, magnesium, calcium, strontium and barium, and the radioactive element radium. Magnesium and calcium are generally available for use in school. These metals have the following properties. [Pg.151]

The atomic composition of polymers encompasses primarily non-metallic elements such as carbon (C), hydrogen (H) and oxygen (O). In addition, recurrent elements are nitrogen (N), chlorine (Cl), fluoride (F) and sulfur (S). The so-called semi-organic polymers contain other non-metallic elements such as silicon (Si) in silicone or polysiloxane, as well as bor or beryllium (B). Although other elements can sometime be found in polymers, because of their very specific nature, we will not mention them here. The properties of the above elements lead to specific properties that are common of all polymers. These are ... [Pg.2]


See other pages where Beryllium elemental properties is mentioned: [Pg.14]    [Pg.14]    [Pg.121]    [Pg.466]    [Pg.13]    [Pg.42]    [Pg.444]    [Pg.701]    [Pg.295]    [Pg.134]    [Pg.123]    [Pg.240]    [Pg.240]    [Pg.14]    [Pg.14]    [Pg.121]    [Pg.166]    [Pg.466]    [Pg.222]    [Pg.236]    [Pg.441]    [Pg.451]    [Pg.296]    [Pg.1188]    [Pg.797]    [Pg.115]    [Pg.3]    [Pg.29]    [Pg.77]    [Pg.192]    [Pg.547]    [Pg.182]    [Pg.173]    [Pg.400]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Beryllium elemental

Beryllium elements

Elements properties

© 2024 chempedia.info