Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzoin compound

Stetter et al. were the first to use thiazolium salts as catalysts for the preparation of acyloin and benzoin compounds on a preparative... [Pg.84]

BenzUketals are another important class of photoinitiators (Table 4) developed for free-radical vinyl polymerization. Benzilketals exhibit higher thermal stability than benzoin compounds due to the absence of thermally labile benzylic hydrogen. The most prominent member of this class is the commercially used 2,2-dimethoxy-2-phenylacetophenone (DMPA). This initiator shows an excellent efficiency in photopolymerizations and is, at the same time, easy to synthesize. Other benzilketals are also suitable initiators but do not reach the price performance ratio of DMPA. [Pg.159]

Many aromatic aldehydes (having the -CHO group joined directly to the benzene ring) undergo polymerisation when heated with a solution of potassium cyanide in aqueous ethanol. Thus benzaldehyde gives benzoin, a compound of double function, since it contains both a secondary alcoholic and a ketonic... [Pg.233]

Although esters and ethers (327, R = alkyl or acyl) of the enediol form (327, R = H) of benzoin are known, the parent compound exists... [Pg.433]

Active carbonyl compounds such as benzaldehyde attack the electron-rich double bond in DTDAFs to give a dipolar adduct, which immediately undergoes dissociation with formation of two molecules of 146 (64BSF2857 67LA155).Tlie existence of by-products such as benzoin led to the synthetic application of thiazolium salts in the acyloin condensation. For example, replacement of the classic cyanide ion by 3-benzyl-4-methyl-5(/3-hydroxyethyl) thiazolium salts allowed the benzoin-type condensation to take place in nonaqueous solvents (76AGE639) (Scheme 57). [Pg.168]

A new brush-type CSP, the Whelk-0 1, was used by Blum et al. for the analytical and preparative-scale separations of racemic pharmaceutical compounds, including verapamil and ketoprofen. A comparison of LC and SFC revealed the superiority of SFC in terms of efficiency and speed of method development [50]. The Whelk-0 1 selector and its homologues have also been incorporated into polysiloxanes. The resulting polymers were coated on silica and thermally immobilized. Higher efficiencies were observed when these CSPs were used with sub- and supercritical fluids as eluents, and a greater number of compounds were resolved in SFC compared to LC. Compounds such as flurbiprofen, warfarin, and benzoin were enantioresolved with a modified CO, eluent [37]. [Pg.307]

In a few cases, azo polymers were synthesized pho-tochemically. Azobenzoin compounds have photo cleavable benzoin groups. Being irradiated with UV light (A = 350 nm) 4,4 -azo-bis(4-cyanopentanoyl)-bis benzoin, ACPB, undergoes a-scission forming two free radicals per initiator molecule (Scheme 24). [Pg.746]

Hepuzer et al. [91] have used the photoinduced homolytical bond scission of ACPB to produce styrene-based MAIs. These compounds were in a second thermally induced polymerization transferred into styrene-methacrylate block copolymers. However, as Scheme 24 implies, benzoin radicals are formed upon photolysis. In the subsequent polymerization they will react with monomer yielding nonazofunctionalized polymer. The relatively high amount of homopolymer has to be separated from the block copolymer formed after the second, thermally induced polymerization step. [Pg.746]

D. Benzoin-a-oxime (cupron) (VII). This compound yields a green predpitate, CuC14Hu02N, with copper in dilute ammoniacal solution, which may be dried to constant weight at 100 °C. Ions which are predpitated by aqueous ammonia are kept in solution by the addition of tartrate the reagent is then spedfic for copper. Copper may thus be separated from cadmium, lead, nickel, cobalt, zinc, aluminium, and small amounts of iron. [Pg.442]

Acyloins (a-hydroxy ketones) are formed enzymatically by a mechanism similar to the classical benzoin condensation. The enzymes that can catalyze reactions of this type arc thiamine dependent. In this sense, the cofactor thiamine pyrophosphate may be regarded as a natural- equivalent of the cyanide catalyst needed for the umpolung step in benzoin condensations. Thus, a suitable carbonyl compound (a -synthon) reacts with thiamine pyrophosphate to form an enzyme-substrate complex that subsequently cleaves to the corresponding a-carbanion (d1-synthon). The latter adds to a carbonyl group resulting in an a-hydroxy ketone after elimination of thiamine pyrophosphate. Stereoselectivity of the addition step (i.e., addition to the Stand Re-face of the carbonyl group, respectively) is achieved by adjustment of a preferred active center conformation. A detailed discussion of the mechanisms involved in thiamine-dependent enzymes, as well as a comparison of the structural similarities, is found in references 1 -4. [Pg.672]

Benzoin and a wide variety of related compounds (e.g. 12, 70-74) have been extensively studied both as initiators of polymerization and in terms of their general photochemistry.271 2 3 The acetophenone chromophore absorbs in the near UV (300-400 nm). In the absence of hydrogen atom donors the mechanism of... [Pg.99]

The acyl phosphonates, acyl phosphine oxides and related compounds (e.g. 81. 82) absorb strongly in the near UV (350-400 nm) and generally decompose by rescission in a manner analogous to the benzoin derivatives.381"285 Quantum yields vary from 0.3 to 1.0 depending on structure. The phosphinyl radicals are highly reactive towards unsaturated substrates and appear to have a high specificity for addition v.v abstraction (see 3.4.3.2). [Pg.101]

These conclusions were supported by the results obtained in a study of the reactions of various types of acetylenes with TTN (94). Hydration of the C=C bond was found to occur to a very minor extent, if at all, with almost all of the compounds studied, and the nature of the products formed was dependent on the structure of the acetylene and the solvent employed. Oxidation of diarylacetylenes with two equivalents of TTN in either aqueous acidic glyme or methanol as solvent resulted in smooth high yield conversion into the corresponding benzils (Scheme 23). The mechanism of this oxidation in aqueous medium most probably involves oxythallation of the acetylene, ketonization of the initially formed adduct (XXXV) to give the monoalkylthallium(III) derivative (XXXVI), and conversion of this intermediate into a benzoin (XXXVII) by a Type 1 process. Oxidation of (XXXVII) to the benzil (XXXVIII) by the second equivalent of reagent would then proceed in exactly the same manner as described for the oxidation of chalcones, deoxybenzoins, and benzoins to benzils by TTN. The mechanism of oxidation in methanol solution is somewhat more complex and has not yet been fully elucidated. [Pg.193]

R)-Benzoins and (/ )-2-hydroxypropiophcnonc derivatives are formed on a preparative scale by benzaldehyde lyase (BAL)-catalyzed C-C bond formation from aromatic aldehydes and acetaldehyde in aqueous buffer/DMSO solution with remarkable ease in high chemical yield and high optical purity (Eq. 8.112).303 Less-stable mixed benzoins were also generated via reductive coupling of benzoyl cyanide and carbonyl compounds by aqueous titanium(III) ions.304... [Pg.278]

In the Asia-Pacific region, AItingia excelsa Noronha (Liquidambar altingiana Bl.), Alan-gia gracilipes Hemsl. (Amyris ambrosiaca L.f.), Liquidambar orientalis Mill, and Liquidambar formosana Hance are of medicinal value. The purified basalm obtained from the trunk of Liquidambar orientalis Mill, or prepared storax (British Pharmaceutical Codex, 1969) has been used similarly as Peru basalm in the form of an ointment to treat scabies and other skin diseases, and as an ingredient of Compound Benzoin Tincture. [Pg.199]

Attack by eCN is slow (rate-limiting), while proton transfer from HCN or a protic solvent, e.g. HzO, is rapid. The effect of the structure of the carbonyl compound on the position of equilibrium in cyanohydrin formation has already been referred to (p. 206) it is a preparative proposition with aldehydes, and with simple aliphatic and cyclic ketones, but is poor for ArCOR, and does not take place at all with ArCOAr. With ArCHO the benzoin reaction (p. 231) may compete with cyanohydrin formation with C=C—C=0, 1,4-addition may compete (cf. p. 200). [Pg.212]

This method has an analogy in the well known acyloin condensation, a reaction which takes place between two molecules of an aromatic aldehyde in a solution containing an alkali cyanide. Thus for example, benzaldehyde gives rise to benzoin, a compound in which the enediolic system, —C(OH)=C(OH)—, exists mainly in the ketonic form —CO—CHOH—. If a hydroxy aldehyde like D-glucose (X) is allowed to... [Pg.106]

Benzoe resin (also known as benzoin) comes from Styrax spp. (Styraceae family). In the Sty rax genus the only species that occurs in the Mediterranean is Styrax officinalis, so this was probably the source of the resin in ancient times in that area. Benzoe mainly contains free cinnamic and benzoic acids, and their corresponding esters with cinnamyl, p-coumaryl and coniferyl alcohols. The amounts of these compounds are quite variable and depend on which species the resin was obtained from [129]. [Pg.17]

Catalytic enantioselective crossed aldehyde-ketone benzoin cyclizations of ketoaldehydes, such as 13, readily obtained from an aryl nitrile oxide and a 1,3-diketone, were studied in order to perform the synthesis of complex molecules. Significant asymmetric induction was observed with chiral triazolium salts such as 14, in the presence of DBU as base, leading to compound 15 in high yield and with 99% ee in favor of the R enantiomer <06AG(E)3492>. [Pg.289]

Podophyllin 10-25% in compound tincture of benzoin applied to lesions repeat weekly if necessary,1 or... [Pg.520]

The synthesis of the furan-imidazole derivatives, shown in Scheme 2, were also described by Wang et al. [34]. Reaction of 4-(dimethylamino)benzalde-hyde (20) with trimethylsilylcyanide (TMS)-CN in the presence of Znl2 produced the TMS cyanohydrin 21. Compound 21 was treated with LDA followed by the addition of 3,4,5-trimethoxybenzaldehyde to give the benzoin intermediate 22. Oxidation with CUSO4 in aqueous pyridine, followed by reaction with 3-furaldehyde in acetic acid, produced the substituted imidazole 23. [Pg.25]

The synthesis and biological testing of the pyrazine compound 123 was described by Wang et al. [34], The same benzoin intermediate 22 was formed as described in Scheme 2. A three-step reaction was then performed to obtain the desired pyrazine 123, shown in Scheme 31 (i) oxidation of Q1SO4 in aqueous pyridine, (ii) reaction with ethylenediamine in EtOH, and (iii) aromatization in the presence of elemental sulfur. [Pg.44]


See other pages where Benzoin compound is mentioned: [Pg.24]    [Pg.784]    [Pg.182]    [Pg.24]    [Pg.784]    [Pg.182]    [Pg.56]    [Pg.37]    [Pg.133]    [Pg.52]    [Pg.312]    [Pg.93]    [Pg.96]    [Pg.51]    [Pg.93]    [Pg.507]    [Pg.751]    [Pg.99]    [Pg.33]    [Pg.213]    [Pg.998]    [Pg.281]    [Pg.182]    [Pg.189]    [Pg.38]    [Pg.207]    [Pg.268]   
See also in sourсe #XX -- [ Pg.126 , Pg.784 ]




SEARCH



Benzoin

© 2024 chempedia.info