Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution products, benzene

The radical (CeH — ), is known as phenyl and styrene is, therefore, phenyl ethylene, naming it as a substitution product of ethylene. As a benzene substitution product its name is ethylenyl benzene. [Pg.493]

Benzene substitution products cannot be optically active as all groups are in the plane of the benzene ring (with the exception of cases where one or more of the substituted groups are asymmetric).—O.T.B.]... [Pg.169]

One of the characteristic properties of phenol is the ease with which it gives substitution products, this property being particularly well shown by the ready nitration, sulphonation and bromination which the benzene ring in the phenol molecule undergoes. [Pg.170]

If, on the other hand, the encounter pair were an oriented structure, positional selectivity could be retained for a different reason and in a different quantitative sense. Thus, a monosubstituted benzene derivative in which the substituent was sufficiently powerfully activating would react with the electrophile to give three different encounter pairs two of these would more readily proceed to the substitution products than to the starting materials, whilst the third might more readily break up than go to products. In the limit the first two would be giving substitution at the encounter rate and, in the absence of steric effects, products in the statistical ratio whilst the third would not. If we consider particular cases, there is nothing in the rather inadequate data available to discourage the view that, for example, in the cases of toluene or phenol, which in sulphuric acid are nitrated at or near the encounter rate, the... [Pg.119]

Process Technology Evolution. Maleic anhydride was first commercially produced in the early 1930s by the vapor-phase oxidation of benzene [71-43-2]. The use of benzene as a feedstock for the production of maleic anhydride was dominant in the world market well into the 1980s. Several processes have been used for the production of maleic anhydride from benzene with the most common one from Scientific Design. Small amounts of maleic acid are produced as a by-product in production of phthaHc anhydride [85-44-9]. This can be converted to either maleic anhydride or fumaric acid. Benzene, although easily oxidized to maleic anhydride with high selectivity, is an inherently inefficient feedstock since two excess carbon atoms are present in the raw material. Various compounds have been evaluated as raw material substitutes for benzene in production of maleic anhydride. Fixed- and fluid-bed processes for production of maleic anhydride from the butenes present in mixed streams have been practiced commercially. None of these... [Pg.453]

Table 3 shows the number of stmctural isomers possible when one, two, three, or four substituents, X, Y, and Z, replace the hydrogens of benzene. Table 3. Number of Structural Isomers of the Substitution Products of Benzene... Table 3 shows the number of stmctural isomers possible when one, two, three, or four substituents, X, Y, and Z, replace the hydrogens of benzene. Table 3. Number of Structural Isomers of the Substitution Products of Benzene...
Nucleophilic Substitutions of Benzene Derivatives. Benzene itself does not normally react with nucleophiles such as haUde ions, cyanide, hydroxide, or alkoxides (7). However, aromatic rings containing one or more electron-withdrawing groups, usually halogen, react with nucleophiles to give substitution products. An example of this type of reaction is the industrial conversion of chlorobenzene to phenol with sodium hydroxide at 400°C (8). [Pg.39]

Chlorine or bromine react with benzene in the presence of carriers, such as ferric halides, aluminum halides, or transition metal halides, to give substitution products such as chlorobenzene or bromobenzene [108-86-17, C H Br occasionally para-disubstitution products are formed. Chlorobenzene [108-90-7] ... [Pg.40]

These effects can be attributed mainly to the inductive nature of the chlorine atoms, which reduces the electron density at position 4 and increases polarization of the 3,4-double bond. The dual reactivity of the chloropteridines has been further confirmed by the preparation of new adducts and substitution products. The addition reaction competes successfully, in a preparative sense, with the substitution reaction, if the latter is slowed down by a low temperature and a non-polar solvent. Compounds (12) and (13) react with dry ammonia in benzene at 5 °C to yield the 3,4-adducts (IS), which were shown by IR spectroscopy to contain little or none of the corresponding substitution product. The adducts decompose slowly in air and almost instantaneously in water or ethanol to give the original chloropteridine and ammonia. Certain other amines behave similarly, forming adducts which can be stored for a few days at -20 °C. Treatment of (12) and (13) in acetone with hydrogen sulfide or toluene-a-thiol gives adducts of the same type. [Pg.267]

However, other studies on the nitration of a series of 3-methyl- and 3-ethyl-1,2-benzisoxazoles have shown that a mixture of the 5-nitro and 5,7-dinitro derivatives is formed (77IJC(B)1058, 77IJC(B)1061). The effect of substituents in the benzene ring is also of interest. If the 5-position is blocked, e.g. by a chloro group or by alkyl groups, nitration then occurs at the 4-position. 3-Alkyl-7-chloro and 3,7-dialkyl derivatives result in the formation of the appropriate 5-nitro derivative. The isomeric 3-alkyl-6-chloro- and 3,6-dialkyl-1,2-benzisoxazoles yield a mixture of the 5-nitro and 5,7-dinitro compounds. Both H NMR measurements and alternate syntheses were used in establishing the structures of these substitution products. [Pg.48]

Both 1,2- and 2,1-benzisothiazoles react with electrophiles to give 5- and 7-substituted products (see Section 4.02.3.2). The isothiazole ring has little effect on the normal characteristics of the benzene ring. C-Linked substituents react almost wholly normally, the isothiazole ring having little effect except that phenyl substituents are deactivated (see Section 4.17.2.1). There are, however, considerable differences in the ease of decarboxylation of the carboxylic acids, the 4-isomer being the most stable (see Section 4.02.3.3). [Pg.153]

Perfluoroalkylation of substituted benzenes and heterocyclic substrates has been accomplished through thermolysis of perfluoroalkyl iodides in the presence of the appropriate aromatic compound Isomeric mixtures are often obtained W-Methylpyrrole [143] and furan [148] yield only the a-substituted products (equation 128) Imidazoles are perfluoroalkylated under LTV irradiation [149] (equation 129). 4-Perfluoroalkylimidazoles are obtained regioselectively by SET reactions of an imidazole anion with fluoroalkyl iodides or bromides under mild conditions [150] (equation 130) (for the SET mechanism, see equation 57)... [Pg.481]

This last result bears also on the mode of conversion of the adduct to the final substitution product. As written in Eq. (10), a hydrogen atom is eliminated from the adduct, but it is more likely that it is abstracted from the adduct by a second radical. In dilute solutions of the radical-producing species, this second radical may be the adduct itself, as in Eq. (12) but when more concentrated solutions of dibenzoyl peroxide are employed, the hydrogen atom is removed by a benzoyloxy radical, for in the arylation of deuterated aromatic compounds the deuterium lost from the aromatic nucleus appears as deuterated benzoic acid, Eq. (13).The over-all reaction for the phenylation of benzene by dibenzoyl peroxide may therefore be written as in Eq, (14). [Pg.138]

Although benzene is clearly unsaturatcd, it is much more stable than typical alkenes and fails to undergo the usual alkene reactions. Cyclohexene, for instance, reacts rapidly with Br2 and gives the addition product 1,2-dibromo-cyclohexane, but benzene reacts only slowly with Br2 and gives the substitution product CgH Br. As a result of this substitution, the cyclic conjugation of the benzene ring is retained. [Pg.520]

A second difference between alkene addition and aromatic substitution occurs after the carbocation intermediate has formed. Instead of adding Br- to give an addition product, the carbocation intermediate loses H+ from the bromine-bearing carbon to give a substitution product. Note that this loss of H+ is similar to what occurs in the second step of an El reaction (Section 11.10). The net effect of reaction of Br2 with benzene is the substitution of H+ by Br+ by the overall mechanism shown in Figure 16.2. [Pg.549]

Aromatic rings can be nitrated by reaction with a mixture of concentrated nitric and sulfuric acids. The electrophile is the nitronium ion, N02+, which is generated from HNO3 by protonation and loss of water. The nitronium ion reacts with benzene to yield a carbocation intermediate, and loss of H+ from this intermediate gives the neutral substitution product, nitrobenzene (Figure 16.4). [Pg.551]

Unlike benzene, pyridine undergoes electrophilic aromatic substitution reactions with great difficulty. Halogenation can be carried out under drastic conditions, but nitration occurs in very low yield, and Friedel-Crafts reactions are not successful. Reactions usually give the 3-substituted product. [Pg.949]

The chemistry of these polycyclic heterocycles is just what you miglu expect from a knowledge of the simpler heterocycles pyridine and pyrrole Quinoline and isoquinoline both have basic, pyridine-like nitrogen atoms, anc both undergo electrophilic substitutions, although less easily than benzene Reaction occurs on the benzene ring rather than on the pyridine ring, and r mixture of substitution products is obtained. [Pg.951]

Sulfonyl nitrenes react with benzene to produce appreciable yields of aromatic substitution products. The nitrene thermally generated in benzene from 229 gives a monosubstitution product. When the reaction is carried out in mesitylene as a solvent, the two sulfonylnitrenes react with mesitylene to afford 230 (equation 140)135. [Pg.810]

Peroxide decomposition in aromatic and other unsaturated solvents homolytic aroniMic substitution and olefin polymerization Decomposition of peroxides in aromatic solvents leads to attack on the aromatic nucleus by radicals and hence to substitution products (for a recent summary, see Williams, 1970). In the substitution of benzene and related substrates by phenyl radicals, for example, cyclohexadienyl... [Pg.91]

Starting materials other than sulphonyl azides have been used as possible sources of sulphonyl nitrenes. The decomposition of the triethyl-ammonium salt of iV- -nitrobenzenesulphonoxybenzenesulphonamide (26) in methanol, ethanol, and aniline gave products derived from a Lossen-type rearrangement 20> (Scheme 3). It was felt that the rearrangement did not involve a free sulphonyl nitrene since, when the decomposition was carried out in toluene-methylene chloride or in benzene, no products (benzenesulphonamides) of substitution of the aromatic solvent nucleus were found (as are usually found with sulphonyl nitrenes from the thermal decomposition of the corresponding azides). On the other... [Pg.16]

The thermal, but not the photochemical, decomposition of ferro-cenylsulphonyl azide (14) in benzene gave some intermolecular aromatic substitution product FCSO2NHC6H5 (6.5%) but no intermolecular cyclization product (17). Contrariwise, photolysis of 14 in benzene gave 17 but no anilide 1 ). [Pg.32]

The thermal rearrangement of 1,2-dialkynylimidazoles gave intermediate cyclopentapyrazine carbenes 83, which then trapped the solvent (benzene) to give a phenyl-substituted products 84 <06TL353>. [Pg.406]


See other pages where Substitution products, benzene is mentioned: [Pg.486]    [Pg.306]    [Pg.52]    [Pg.49]    [Pg.56]    [Pg.486]    [Pg.306]    [Pg.52]    [Pg.49]    [Pg.56]    [Pg.533]    [Pg.482]    [Pg.493]    [Pg.158]    [Pg.210]    [Pg.123]    [Pg.310]    [Pg.824]    [Pg.93]    [Pg.1093]    [Pg.74]    [Pg.824]    [Pg.533]    [Pg.53]    [Pg.186]    [Pg.27]    [Pg.359]    [Pg.109]    [Pg.128]    [Pg.754]    [Pg.106]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Benzene production

Benzene products

Benzene substitution

Substitutable products

Substitute products

Substitution product

Substitution production

Substitution substituted benzenes

© 2024 chempedia.info