Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene substitution pattern

In the light of this information, we can now consider a few examples of frequently encountered benzene-substitution patterns. [Pg.50]

The reason was the first ever use of curly or curved arrows, in this case to represent tautomerism in A,A-dimethylamino derivatives. While the arrows were not then meant to indicate movement of electrons (as was later universal in the electronic theory of organic reactions), it is most probable that the symbols were adopted by Robert Robinson who, with Watson, worked at British Dyes during World War I123. Arthur Lapworth and Alfred Werner had already used arrows in mechanistic studies, the former perhaps influenced by the inventor of the TNA process, Bernard J. FlUrscheim, who explained benzene substitution patterns in terms of affinity demand , indicated by arrowed bonds124. [Pg.66]

Carbon-hydrogen stretching vibrations with frequencies above 3000 cm are also found m arenes such as tert butylbenzene as shown m Figure 13 33 This spectrum also contains two intense bands at 760 and 700 cm which are characteristic of monosub stituted benzene rings Other substitution patterns some of which are listed m Table 13 4 give different combinations of peaks... [Pg.561]

The coupling constants of ortho ( Jhh = 7 Hz), meta Jhh =1-5 Hz) and para protons CJhh I Hz) in benzene and naphthalene ring systems are especially useful in structure elucidation (Table 2.5). With naphthalene and other condensed (hetero-) aromatics, a knowledge of zig zag coupling = 0.8 Hz) is helpful in deducing substitution patterns. [Pg.21]

Knowing the substitution pattern of both benzene rings A and B, one can deduce the molecular structure from the CH connectivities of the CH COSY and CH COLOC plots. The interpretation of both experiments leads firstly to the correlation Table 41.1. [Pg.216]

The second point is somewhat less obvious but is readily illustrated by the synthesis of 1,3,5-tribromobenzene. This particular- substitution pattern cannot be obtained by direct brornination of benzene because bromine is an ortho, para director. Instead, advantage is taken of the powerful activating and ortho, para-directing effects of the fflnino group in aniline. Brornination of aniline yields 2,4,6-tribromoaniline in quantitative yield. Diazotization of the resulting 2,4,6-tribromoaniline and reduction of the diazonium salt gives the desired 1,3,5-tribromobenzene. [Pg.949]

Depending upon the substitution pattern, a thermal valence isomerization of 1,4-dioxocins 4 to the tricyclic jyn-benzene dioxides (xyn-3,8-dioxatricyclo[5.1,0.02-4]oct-5-enes) 3 can be detected. On the other hand, the valence isomerization of sin-benzene dioxides (anti-benzene dioxides do not undergo such rearrangements) provides a general approach to 1,4-dioxocins 4. [Pg.562]

Thiols react more rapidly with nucleophilic radicals than with electrophilic radicals. They have very large Ctr with S and VAc, but near ideal transfer constants (C - 1.0) with acrylic monomers (Table 6.2). Aromatic thiols have higher C,r than aliphatic thiols but also give more retardation. This is a consequence of the poor reinitiation efficiency shown by the phenylthiyl radical. The substitution pattern of the alkanethiol appears to have only a small (<2-fokl) effect on the transfer constant. Studies on the reactions of small alkyl radicals with thiols indicate that the rate of the transfer reaction is accelerated in polar solvents and, in particular, water.5 Similar trends arc observed for transfer to 1 in S polymerization with Clr = 1.4 in benzene 3.6 in CUT and 6.1 in 5% aqueous CifiCN.1 In copolymerizations, the thiyl radicals react preferentially with electron-rich monomers (Section 3.4.3.2). [Pg.290]

Examinations of the connection between the chemical structure of alkylaryl sulfates and their physical-chemical properties show that solubility, aggregations and adsorption behavior, foam behavior and consistency are determined by the following structural elements the length of the alkyl chain, the position at which the benzene ring is connected to the alkyl chain, and the substitution pattern of the benzene ring [187,188]. [Pg.88]

Another limitation of the traditional Cu-mediated cyclooligomerization reaction is generation of differentially substituted PDMs. In the above case, the substitution pattern in the starting o-diethynylbenzene must be maintained on each and every benzene moiety in the oligomeric mixture of PDMs that is produced. Thus, it is impossible to prepare less symmetric systems like 100 via this route. With the intramolecular synthetic approach, however, it should be possi-... [Pg.111]

Moving on to multisubstituted aromatic systems, the real value of Table 5.4 soon becomes apparent. In dealing with such systems, it will not be long before you encounter a 1,4 di-substituted benzene ring. This substitution pattern (along with the 1,2 symmetrically di-substituted systems) gives rise to an NMR phenomenon that merits some explanation - that of chemical and magnetic equivalence and the difference between them. Consider the 1,4 di-substituted aromatic compound shown in Structure 5.1. [Pg.54]

Numerous reports published in recent years have focused on carbon-centered radicals derived from compounds with selected substitution patterns such as alkanes [40,43,47], halogenated alkanes [43,48,49,51-57], alkenes [19], benzene derivatives [43,47], ethers [51,58], aldehydes [48], amines [10,59], amino acids [23,60-67] etc. Particularly significant advances have been made in the theoretical treatment of radicals occurring in polymer chemistry and biological chemistry. The stabilization of radicals in all of these compounds is due to the interaction of the molecular orbital carrying the unpaired electron with energetically and spatially adjacent molecular orbitals, and four typical scenarios appear to cover all known cases [20]. [Pg.177]

The second structural property described by the 4ypc index is the substitution pattern on the benzene ring. The value of the 4ypc index increases sharply with the degree of substitution, while in the isomeric classes of substituted benzenes it increases with the proximity of substituents. Thus, this structural parameter has also been found to be very useful in describing activities and properties of polysubstituted benzenes [103], chlorinated benzenes [279], and polychlorinated biphenyls [286]. [Pg.263]

The Number of Aromatic Resonances in Benzenes with Different Substitution Patterns... [Pg.69]


See other pages where Benzene substitution pattern is mentioned: [Pg.287]    [Pg.287]    [Pg.3]    [Pg.949]    [Pg.771]    [Pg.772]    [Pg.152]    [Pg.44]    [Pg.48]    [Pg.24]    [Pg.268]    [Pg.106]    [Pg.473]    [Pg.282]    [Pg.602]    [Pg.1]    [Pg.1040]    [Pg.1041]    [Pg.806]    [Pg.64]    [Pg.391]    [Pg.210]    [Pg.630]    [Pg.124]    [Pg.263]    [Pg.138]    [Pg.295]    [Pg.654]    [Pg.45]    [Pg.886]    [Pg.16]    [Pg.514]   
See also in sourсe #XX -- [ Pg.208 ]

See also in sourсe #XX -- [ Pg.155 ]

See also in sourсe #XX -- [ Pg.2 , Pg.1305 ]




SEARCH



Benzene ring, substitution patterns

Benzene substitution

Substitution pattern of benzene ring

Substitution patterns

Substitution substituted benzenes

© 2024 chempedia.info