Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene Friedel-Crafts alkylations

You have learned two ways to make an alkyl benzene Friedel-Crafts alkylation, and Friedel-Crafts acylation followed by... [Pg.682]

The selectivity of an electrophile, measured by the extent to which it discriminated either between benzene and toluene, or between the meta- and ara-positions in toluene, was considered to be related to its reactivity. Thus, powerful electrophiles, of which the species operating in Friedel-Crafts alkylation reactions were considered to be examples, would be less able to distinguish between compounds and positions than a weakly electrophilic reagent. The ultimate electrophilic species would be entirely insensitive to the differences between compounds and positions, and would bring about reaction in the statistical ratio of the various sites for substitution available to it. The idea has gained wide acceptance that the electrophiles operative in reactions which have low selectivity factors Sf) or reaction constants (p+), are intrinsically more reactive than the effective electrophiles in reactions which have higher values of these parameters. However, there are several aspects of this supposed relationship which merit discussion. [Pg.141]

Nitration in sulphuric acid is a reaction for which the nature and concentrations of the electrophile, the nitronium ion, are well established. In these solutions compounds reacting one or two orders of magnitude faster than benzene do so at the rate of encounter of the aromatic molecules and the nitronium ion ( 2.5). If there were a connection between selectivity and reactivity in electrophilic aromatic substitutions, then electrophiles such as those operating in mercuration and Friedel-Crafts alkylation should be subject to control by encounter at a lower threshold of substrate reactivity than in nitration this does not appear to occur. [Pg.142]

All attempts to prepare selenazole derivatives by the Gatterman (for-mylation) or Friedel-Crafts (alkylation) methods failed (19, 26). indicating that the electrophilic reactivity of the 5-position is less than that of benzene or toluene. [Pg.240]

Friedel-Crafts alkylation Alkyl halides react with benzene in the presence of alu minum chloride to yield alkylbenzenes... [Pg.475]

One drawback to Fnedel-Crafts alkylation is that rearrangements can occur espe cially when primary alkyl halides are used For example Friedel-Crafts alkylation of benzene with isobutyl chloride (a primary alkyl halide) yields only tert butylbenzene... [Pg.482]

Isopropylbenzene is prepared by the Friedel-Crafts alkylation of benzene y using isopropyl chloride and aluminum chloride (Section 12 6) j... [Pg.933]

Friedel-Crafts alkylation using alkenes has important industrial appHcations. The ethylation of benzene with ethylene to ethylbenzene used in the manufacture of styrene, is one of the largest scale industrial processes. The reaction is done under the catalysis of AlCl in the presence of a proton source, ie, H2O, HCl, etc, although other catalysts have also gained significance. [Pg.551]

In addition, boron, aluminum, and gallium tris(triduoromethanesulfonates) (tridates), M(OTf)2 and related perduoroalkanesulfonates were found effective for Friedel-Crafts alkylations under mild conditions (200). These Lewis acids behave as pseudo haUdes. Boron tris(tridate) shows the highest catalytic activity among these catalysts. A systematic study of these catalysts in the alkylation of aromatics such as benzene and toluene has been reported (201). [Pg.564]

Catalysts used in the polymerization of C-5 diolefins and olefins, and monovinyl aromatic monomers, foUow closely with the systems used in the synthesis of aHphatic resins. Typical catalyst systems are AlCl, AIBr., AlCl —HCl—o-xylene complexes and sludges obtained from the Friedel-Crafts alkylation of benzene. Boron trifluoride and its complexes, as weU as TiCl and SnCl, have been found to result in lower yields and higher oligomer content in C-5 and aromatic modified C-5 polymerizations. [Pg.354]

Cumene. Cumene (qv) is produced by Friedel-Crafts alkylation of benzene by propylene (103,104). The main appHcation of cumene is the production of phenol (qv) and by-product acetone (qv). Minor amounts are used in gasoline blending (105). [Pg.130]

All lation. Friedel-Crafts alkylation (qv) of benzene with ethylene or propjiene to produce ethylbenzene [100-41 -4] CgH Q, or isopropylbenzene [98-82-8] (cumene) is readily accompHshed ia the Hquid or vapor phase with various catalysts such as BF (22), aluminum chloride,... [Pg.40]

An important difference between Friedel-Crafts alkylations and acylations is that acyl cations do not rearrange. The acyl group of the acyl chloride or acid anhydride is transfened to the benzene ring unchanged. The reason for this is that an acyl cation is so strongly stabilized by resonance that it is more stable than any ion that could conceivably arise from it by a hydride or alkyl group shift. [Pg.486]

Because acylation of an aromatic ring can be accomplished without reanangement, it is frequently used as the first step in a procedure for the alkylation of aromatic compounds by acylation-reduction. As we saw in Section 12.6, Friedel-Crafts alkylation of benzene with primary alkyl halides nonrrally yields products having rearranged alkyl groups as substituents. When a compound of the type ArCFl2R is desued, a two-step sequence is used in which the first step is a Friedel-Crafts acylation. [Pg.486]

It should be noted that Scheme 5.1-44 shows idealized Friedel-Crafts allcylation reactions. In practice, there are a number of problems associated with the reaction. These include polyalkylation reactions, since the products of a Friedel-Crafts alkylation reaction are often more reactive than the starting material. Also, isomerization and rearrangement reactions can occur, and can result in a large number of products [74, 75]. The mechanism of Friedel-Crafts reactions is not straightforward, and it is possible to propose two or more different mechanisms for a given reaction. Examples of the typical processes occurring in a Friedel-Crafts alkylation reaction are given in Scheme 5.1-45 for the reaction between 1-chloropropane and benzene. [Pg.196]

The methodology of a Lewis acid dissolved in an ionic liquid has been used for Friedel-Crafts alkylation reactions. Song [85] has reported that scandium(III) tri-flate in [BMIM][PFg] acts as an alkylation catalyst in the reaction between benzene and hex-l-ene (Scheme 5.1-55). [Pg.201]

Mechanism of the Friedel-Crafts alkylation reaction of benzene with 2-chloropropane to yield isopropylbenzene (cumene). [Pg.555]

Ualike the multiple substitutions that often occur in Friedel-Crafts alkylations, acylations never occur more than once on a ring because the product acyl-benzene is less reactive than the nonacylated starting material. We ll account for this reactivity difference in the next section. [Pg.558]

Ferrocene behaves in many respects like an aromatic electron-rich organic compound which is activated toward electrophilic reactions.In Friedel-Crafts type acylation of aromatic compounds with acyl halides, ferrocene is lO times more reactive than benzene and gives yields over 80%. However, ferrocene is different from benzene in respect to reactivity and yields in the Friedel-Crafts alkylation with alkyl halides or olefins. The yields of ferrocene alkylation are often very low. and the separations of the polysubstituted byproducts are tedious. [Pg.155]

Vinylchlorosilanes react with aromatic compounds in the presence of Lewis acid to give the alkylation products 2-(chlorosilyl)ethylarenes. In the Friedel-Crafts alkylation of aromatic compounds, the reactivity of vinylchlorosilanes is slightly lower than that of allylchlorosilanes.Friedel-Crafts alkylation of benzene derivatives with vinylsilanes to give 2-(chlorosilyl)ethylarenes was first reported by the Andrianov group (Eq. (5))." The reactivity of vinylsilanes in the... [Pg.158]


See other pages where Benzene Friedel-Crafts alkylations is mentioned: [Pg.266]    [Pg.266]    [Pg.481]    [Pg.481]    [Pg.483]    [Pg.487]    [Pg.552]    [Pg.552]    [Pg.481]    [Pg.481]    [Pg.483]    [Pg.487]    [Pg.129]    [Pg.123]    [Pg.556]    [Pg.19]    [Pg.936]    [Pg.709]    [Pg.709]    [Pg.145]    [Pg.146]    [Pg.165]   
See also in sourсe #XX -- [ Pg.777 , Pg.778 , Pg.779 , Pg.780 ]




SEARCH



Alkyl benzenes Friedel-Crafts alkylation

Alkylated benzene

Benzene Friedel-Crafts alkylation

Benzene alkylation

Benzenes alkyl

Friedel Crafts alkylation

Friedel-Crafts alkylations

© 2024 chempedia.info