Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene dielectric constant

A simple eleetrostatie ealculaticm, considering the electrical free energy of the gjydne dipolar ion in water (dielectdc constant near 80) and in benzene (dielectric constant near 2) suggests that fg may be of the < der of 10 < (see Edsall, ret. 38, p. 108-110). [Pg.410]

If this electrostatic treatment of the substituent effect of poles is sound, the effect of a pole upon the Gibbs function of activation at a particular position should be inversely proportional to the effective dielectric constant, and the longer the methylene chain the more closely should the effective dielectric constant approach the dielectric constant of the medium. Surprisingly, competitive nitrations of phenpropyl trimethyl ammonium perchlorate and benzene in acetic anhydride and tri-fluoroacetic acid showed the relative rate not to decrease markedly with the dielectric constant of the solvent. It was suggested that the expected decrease in reactivity of the cation was obscured by the faster nitration of ion pairs. [Pg.173]

Dielectric Constant The dielectric constant of material represents its ability to reduce the electric force between two charges separated in space. This propei ty is useful in process control for polymers, ceramic materials, and semiconduc tors. Dielectric constants are measured with respect to vacuum (1.0) typical values range from 2 (benzene) to 33 (methanol) to 80 (water). TEe value for water is higher than for most plastics. A measuring cell is made of glass or some other insulating material and is usually doughnut-shaped, with the cylinders coated with metal, which constitute the plates of the capacitor. [Pg.764]

For many years the petroleum industry has defined nonconductive liquids as having conductivities less than 50 pS/m. A higher value of 100 pS/m is used here to address the higher dielectric constants of certain flammable chemicals in relation to petroleum products. For example the dielectric constant of ethyl ether is 4.6 versus 2.3 for benzene from Eq. (2-3.2), ethyl ether therefore has the same relaxation time at a conductivity of 100 pS/m as benzene at a conductivity of 50 pS/m. It is the relaxation time, not the conductivity alone, that determines the rate of loss of charge hence the same logic that makes 50 pS/m appropriate for identifying nonconductive hydrocarbons makes 100 pS/m appropriate for identifying nonconductive chemical products. [Pg.103]

In the case of symmetrical molecules such as carbon tetrachloride, benzene, polyethylene and polyisobutylene the only polarisation effect is electronic and such materials have low dielectric constants. Since electronic polarisation may be assumed to be instantaneous, the influence of frequency and temperature will be very small. Furthermore, since the charge displacement is able to remain in phase with the alternating field there are negligible power losses. [Pg.112]

The mechanism of the cycloaddition of phenyl azide to norbornene has been shown to involve a concerted mechanism with a charge imbalance in the transition state (199). In a similar manner the cycloaddition of phenyl azide to enamines apparently proceeds by a concerted mechanism (194, 194a). This is shown by a rather large negative entropy of activation (—36 entropy units for l-(N-morpholino)cyclopentene in benzene solvent at 25°C), indicative of a highly ordered transition state. Varying solvents from those of small dielectric constants to those of large dielectric constants has... [Pg.244]

SeOCl2 (Table 16.7) is a useful solvent it has a high dielectric constant (46.2 at 20°), a high dipole moment (2.62 D in benzene) and an appreciable electrical conductivity (2 x 10 ohm cm at 25°). This last has been ascribed to self-ionic dissociation resulting from chloride-ion transfer 2SeOCl2 SeOCl " -)-SeOCl3-. [Pg.777]

Recently, many investigators have extended the early observations that the ultraviolet spectra of - and y-hydroxypyridines resemble those of their A -methyl (not the 0-methyl) derivatives. This spectral resemblance is found both in aqueous solutions and in solutions of solvents with low dielectric constants, e.g., quinol-4-one in benzene, indicating that these compounds exist predominantly in the oxo form under all conditions. These data are summarized in Table I. In contrast, 4-hydroxyquinoline-3-carboxylic acid has been tentatively concluded to exist in the hydroxy form %- pjTid-2-one-4-carboxylic acid has also been formulated as a hydroxy compound, but this has been disputed. ... [Pg.349]

The problem of the isolation of quaternary salts, even when fornied, is,-in some cases, an acute one. Water or ethanol is friBquently held very tenaciously and this possibility may be the reason that so many workers still use non-hydrie solvents, such as benzene, despite the fact that reactions in such solvents are usually slow clearly the best solvents are the non-hydric ones of high dielectric constant. [Pg.10]

Aprotic solvents include those substances which may be considered to be chemically neutral and virtually unreactive under the conditions employed. Carbon tetrachloride and benzene come in this group, they possess low dielectric constants, do not cause ionisation in solutes and do not undergo reactions with acids and bases. Aprotic solvents are frequently used to dilute reaction mixtures while taking no part in the overall process. [Pg.282]

Aryl and, more so, chlorine substituents on silicon enhance thermal stability of silacyclobutanes. The rate of the first-order thermal decomposition of silacyclobutanes varies inversely with the dielectric constant of the solvent used. Radical initiators have no effect on the thermal decomposition and a polar mechanism was suggested. Thermal polymerization of cyclo-[Ph2SiCH212 has been reported to occur at 180-200°C. The product was a crystalline white powder which was insoluble in benzene and other common organic solvents [19]. [Pg.26]

The extent of the ionization produced by a Lewis acid is dependent on the nature of the more inert solvent component as well as on the Lewis acid. A trityl bromide-stannic bromide complex of one to one stoichiometry exists in the form of orange-red crystals, obviously ionic. But as is. always the case with crystalline substances, lattice energy is a very important factor in determining the stability and no quantitative predictions can be made about the behaviour of the same substance in solution. Thus the trityl bromide-stannic bromide system dilute in benzene solution seems to consist largely of free trityl bromide, free stannic bromide, and only a small amount of ion pairs.187 There is not even any very considerable fraction of covalent tfityl bromide-stannic bromide complex in solution. The extent of ion pair and ion formation roughly parallels the dielectric constant of the solvents used (Table V). The more polar solvent either provides a... [Pg.95]

Additional results of the enhancement in phenol conversion (to dihydroxy benzenes) and oxidation of allyl alcohol (to glycidol and allylic oxidation products) catalyzed by TS-1 in various solvents are illustrated in Fig. 46. In solvents with high dielectric constants, the heterolytic cleavage of the 0-0 bond... [Pg.144]

Initiator decomposition studies of AIBN in supercritical C02 carried out by DeSimone et al. showed that there is kinetic deviation from the traditionally studied solvent systems.16 These studies indicated a measurable decrease in the thermal decomposition of AIBN in supercritical C02 over decomposition rates measured in benzene. Kirkwood correlation plots indicate that the slower rates in supercritical C02 emanate from the overall lower dielectric constant (e) of C02 relative to that ofbenzene. Similar studies have shown an analogous trend in the decomposition kinetics ofperfluoroalkyl acyl peroxides in liquid and supercritical C02.17 Rate decreases of as much as 30% have been seen compared to decomposition measured in 1,1,2-trichlorotrifluoroethane. These studies also served to show that while initiator decomposition is in general slower in supercritical C02, overall initiation is more efficient. Uv-visual studies incorporating radical scavengers concluded that primary geminate radicals formed during thermal decomposition in supercritical C02 are not hindered to the same extent by cage effects as are those in traditional solvents such as benzene. This effect noted in AIBN decomposition in C02 is ascribed to the substantially lower viscosity of supercritical C02 compared to that ofbenzene.18... [Pg.194]

The electrostatic terms can be reasonably well handled in solvents of high dielectric constant, but problems are raised by some solvents of widespread use in spin trapping, for example dichloromethane ( ) = 8.9), chloroform (D = 4.8) and benzene (D = 2.3), in which the electrostatic terms calculated as above for acetonitrile become -24.8, -46 and —96 kcal mol-1, respectively. Already in dichloromethane the effective standard potential of Fe(CN)6 /Fe(CN)6- is increased by 1.08 V and in benzene by an absurdly high 4.2 V ... [Pg.99]

To see how the data can be used to provide insights into the spin trapping process, PBN would correspond to A with Ea = 1.5 V, and acetate ion to A with E° = 1.5 V (Table 5 gives 1.6 V in acetonitrile, and 1.5 V is therefore somewhat too low, but then it is presumably adequate for dichloromethane). In dichloromethane, the OsvCl6-PBN reaction is estimated to be very fast, more than 6 powers of ten faster than the OsvClg-acetate ion reaction, whereas in acetonitrile the absolute rates are still high but the ratio is only about 50. This difference resides only in the difference between electrostatic factors and illustrates the problems of understanding ET reactions in solvents of even lower dielectric constant such as benzene. [Pg.110]

In this way, the concept of donicity explains some properties of substances usually defined apolar from their usual parameters of polarity (dielectric constant, dipolar moment, Et parameter value) but which presents high possibilities of interaction (and of solvatation) with positively charged centres. This is the case of tertiary amines such as triethylamine (or of ethers such as THF, dioxane) which shows usual polarity parameters near that of apolar solvents (benzene, chloroform, chlorobenzene, 1,2-dichloroethane, etc.) but high ability to coordinate positive charges. [Pg.425]


See other pages where Benzene dielectric constant is mentioned: [Pg.34]    [Pg.34]    [Pg.93]    [Pg.307]    [Pg.295]    [Pg.52]    [Pg.412]    [Pg.528]    [Pg.101]    [Pg.145]    [Pg.264]    [Pg.422]    [Pg.551]    [Pg.243]    [Pg.551]    [Pg.270]    [Pg.68]    [Pg.28]    [Pg.296]    [Pg.296]    [Pg.36]    [Pg.5]    [Pg.13]    [Pg.21]    [Pg.777]    [Pg.492]    [Pg.144]    [Pg.50]    [Pg.57]    [Pg.120]    [Pg.367]    [Pg.14]    [Pg.15]    [Pg.17]    [Pg.177]   
See also in sourсe #XX -- [ Pg.14 ]

See also in sourсe #XX -- [ Pg.14 ]

See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.14 ]

See also in sourсe #XX -- [ Pg.270 ]




SEARCH



Benzene constants

© 2024 chempedia.info