Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis benzene derivatives

Bengal lights, dk. green Dimercury dichloride bentonite major component Montmorillonite benzaldehyde mfg. o,a-Dichlorotoluene Toluene benzene derive, synthesis, substituted (Benzene) tricarbonylchromium benzene mfg. [Pg.4895]

This reaction sequence is much less prone to difficulties with isomerizations since the pyridine-like carbons of dipyrromethenes do not add protons. Yields are often low, however, since the intermediates do not survive the high temperatures. The more reactive, faster but less reliable system is certainly provided by the dipyrromethanes, in which the reactivity of the pyrrole units is comparable to activated benzene derivatives such as phenol or aniline. The situation is comparable with that found in peptide synthesis where the slow azide method gives cleaner products than the fast DCC-promoted condensations (see p. 234). [Pg.256]

A -Amino- and A-substituted amino-pyrroles readily undergo Diels-Alder additions and add to activated alkynes at room temperature. The resulting azanorbornadienes extrude A-aminonitrenes and this forms the basis of an unusual synthesis of benzene derivatives (81S753,81TL3347). It has been found that ethyl/3-phenylsulfonylpropiolate (135) is a superior dienophile to DMAD (Scheme 50). [Pg.66]

As appropriately substituted o-disubstituted benzene derivatives are feadily available, this procedure has found widespread application in the synthesis of benzo-fused flve-membered heterocycles. Examples abound in the various chapters in these volumes and the following few examples illustrate the general trend. [Pg.128]

In the early work, benzene formed the basis of a variety of multi-armed structures. Analogs bearing from 2—6 arms were prepared and compared for cation binding ability. The only indication of mode of synthesis for the hexa-substituted benzene derivative is that it was obtained on reaction of benzene-hexakis(methanethiol) and l-bromo-3,6,9-trioxatridecane . The reaction is illustrated in Eq. (7.6), below, devoid of reaction conditions and yields which were not specified. [Pg.314]

The work of Hyatt on cyclotriveratrylene—derived octopus molecules contrasts with this. Of course, these species have the advantage of ligand directionality absent in the benzene-derived octopus molecules. Except for the shortest-armed of the species (i.e., n = 1), all of the complexing agents (i.e., n = 2—4) were capable of complexing alkali metal cations. Synthesis of these species was accomplished as indicated below in Eq. (7.7). These variations of the original octopus molecules were also shown to catalyze the reaction between benzyl chloride and potassium acetate in acetonitrile solution and to effect the Wittig reaction between benzaldehyde and benzyltriphenylphos-phonium chloride. [Pg.315]

Carboxylic acids and their anhydrides acy late a variety of benzene derivatives, fused ring systems, and heterocyclic compounds. An improved procedure for the preparation of l,4-difluoroanthracene-9,10-dione involves reacting phthalic anhydride and 1,4-difluorobenzene to prepare an intermediate carboxylic acid [35] Intramolecular acylation in polyphosphonc acid completes the synthesis (equahon 24). [Pg.415]

A second reaction which is very often used for the preparation of phthalonitriles, although the yields are usually not reproducible, is the Rosenmund-von Braun reaction (see Houben-Weyl, Vol. E5, p 1460).106 107 Herein, a benzene derivative with a 1,2-dibromidc or 1,2-dich-loride unit is treated with copper(I) cyanide in dimethylformamidc or pyridine. During this reaction the formation of the respective copper phthalocyanine often occurs. This can be used as an easy procedure for the exclusive synthesis of copper phthalocyanines (see Section 2.1.1.7.),1 os-109 but can also lead to problems if the phthalonitrile is required as the product. For example, if l,2-dibromo-4-trifluoromethyl-benzene is subjected to a Rosenmund-von Braun reaction no 4-trifluoromethylphthalonitrile but only copper tetra(tri-fluoromethyljphthalocyanine is isolated.110... [Pg.725]

After succeeding in the direct synthesis of allyidichlorosilane hy reacting elemental silicon with a mixture of allyl chloride and hydrogen chloride in 1993," Jung el cil. reinvestigated the Friedel-Crafts reactions of benzene derivatives with allyidichlorosilanes in detail (Eq. (2)). [Pg.151]

Hexa(oligophenyl)benzenes (e. g. 31 or 33) present one possible approach to the realization of this aim. Two efficient synthetic routes have been elaborated for the preparation of hexa(terphenyl)- and hexa(quaterphenyl)benzene. The first, involving palladium-catalyzed trimerization of diarylacetylenes [54] as the key step, was demonstrated by the synthesis of a hexakis-alkylated hexa(terphenyl)benzene derivative 31 from the corresponding bis(terphenyl) acetylene (32). The peripheral tert-alkyl substituents serve to solubilize the molecule. [Pg.182]

The synthetic route represents a classical ladder polymer synthesis a suitably substituted, open-chain precursor polymer is cyclized to a band structure in a polymer-analogous fashion. The first step here, formation of the polymeric, open-chain precursor structure, is AA-type coupling of a 2,5-dibromo-1,4-dibenzoyl-benzene derivative, by a Yamamoto-type aryl-aryl coupling. The reagent employed for dehalogenation, the nickel(0)/l,5-cyclooctadiene complex (Ni(COD)2), was used in stoichiometric amounts with co-reagents (2,2 -bipyridine and 1,5-cyclooctadiene), in dimethylacetamide or dimethylformamide as solvent. [Pg.216]

The total hydrogenation of benzene derivatives represents an important industrial catalytic transformation, in particular with the conversion of benzene into cyclohexane, a key intermediate in adipic acid synthesis, which is used in the production of Nylon-6,6 (Scheme 1). This reaction is still the most important industrial hydrogenation reaction of monocyclic arenes [1]. [Pg.262]

For the synthesis ofthiepins and oxepins, [(ri3-C3Hs)PdCl]2-catalyzed decomposition of 4-diazomethyl-4-methyl-4/f-thiopyrans 387) or -pyrans38] ) is the method of choice. Purely thermal decomposition of the former diazo compounds would require higher temperatures and thus would cause extrusion of sulfur from the primarily formed thiepin, yielding a benzene derivative. [Pg.226]

Sandmeyer s synthesis of aromatic nitriles is far more elegant than the removal of water from the ammonium salts of carboxylic acids, which latter reaction is also applicable to benzene derivatives. In particular, the former synthesis permits of the preparation of carboxylic acids via the nitriles, and so provides a complete substitute for Kolbe s synthesis (alkyl halide and potassium cyanide), which is inapplicable to aromatic compounds. The simplest example is the conversion of aniline into benzoic add. The converse transformation is Hofmann s degradation (benzamide aniline, see p. 152). [Pg.293]

The synthesis of quinazolines from benzene substrates can be accomplished in two ways, either by cyclization of substrates already bearing appropriate substituents, or by treatment of functionalized benzene derivatives with synthons able to provide one or more of the ring atoms needed to complete the pyrimidine ring <1996HC(55)1>. [Pg.204]

The reaction of o-nitrobenzaldehydes with some benzene derivatives in the presence of strong acid (H2S04, PPA) is a classical synthesis of acridinol N-oxides (373) (37BSF240) The synthesis works for benzyl alcohol, benzene, toluene and halobenzenes, but not for benzoic acid, benzonitrile, dimethylaniline, or nitrobenzene. Isoquinoline N-oxides (374) have been obtained from o-bromobenzaldoxime or the acetophenone derivative, and active methylene compounds with copper bromide and sodium hydride (77S760). The azobenzene cobalt tricarbonyl (375) reacts with hexafluorobut-2-yne to give a quinol-2-one (72CC1228), and the 3,4,5-tricyanopyridine (376) is formed when tetracyanoethylene reacts with an enaminonitrile (80S471). [Pg.449]


See other pages where Synthesis benzene derivatives is mentioned: [Pg.300]    [Pg.305]    [Pg.81]    [Pg.36]    [Pg.125]    [Pg.536]    [Pg.155]    [Pg.107]    [Pg.32]    [Pg.145]    [Pg.146]    [Pg.165]    [Pg.204]    [Pg.48]    [Pg.58]    [Pg.85]    [Pg.47]    [Pg.72]    [Pg.1]    [Pg.329]    [Pg.131]    [Pg.410]    [Pg.168]    [Pg.147]    [Pg.186]    [Pg.234]    [Pg.146]    [Pg.301]    [Pg.36]    [Pg.125]    [Pg.203]    [Pg.686]    [Pg.92]   
See also in sourсe #XX -- [ Pg.668 , Pg.675 , Pg.676 ]




SEARCH



Benzene derivatives

Benzene derivatives phenol synthesis

Benzene derivatives trisubstituted, synthesis

Benzene synthesis

Dewar benzene derivative, synthesis

Substituted benzene derivative synthesis

Synthesis of Benzene Derivatives

Synthesis of Benzene Derivatives Electrophilic Aromatic Substitution

© 2024 chempedia.info