Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzannulation carbene complexes

The reaction of alkoxyarylcarbene complexes with alkynes mainly affords Dotz benzannulated [3C+2S+1C0] cycloadducts. However, uncommon reaction pathways of some alkoxyarylcarbene complexes in their reaction with alkynes leading to indene derivatives in a formal [3C+2S] cycloaddition process have been reported. For example, the reaction of methoxy(2,6-dimethylphenyl)chromium carbene complex with 1,2-diphenylacetylene at 100 °C gives rise to an unusual indene derivative where a sigmatropic 1,5-methyl shift is observed [60]. Moreover, a related (4-hydroxy-2,6-dimethylphenyl)carbene complex reacts in benzene at 100 °C with 3-hexyne to produce an indene derivative. However, the expected Dotz cycloadduct is obtained when the solvent is changed to acetonitrile [61] (Scheme 19). Also, Dotz et al. have shown that the introduction of an isocyanide ligand into the coordination sphere of the metal induces the preferential formation of indene derivatives [62]. [Pg.75]

Several examples of [5C+1S] cycloaddition reactions have been described involving in all cases a 1,3,5-metalahexatriene carbene complex as the C5-syn-thon and a CO or an isocyanide as the Cl-synthon. Thus,Merlic et al. described the photochemically driven benzannulation of dienylcarbene complexes to produce ortho alkoxyphenol derivatives when the reaction is performed under an atmosphere of CO, or ortho alkoxyanilines when the reaction is thermally performed in the presence of an isonitrile [111] (Scheme 63). In related works, Barluenga et al. carried out analogous reactions under thermal conditions [36a, c, 47a]. Interestingly, the dienylcarbene complexes are obtained in a first step by a [2+2] or a [3S+2C] process (see Sects. 2.3 and 2.5.1). Further reaction of these complexes with CO or an isonitrile leads to highly functionalised aromatic compounds (Scheme 63). [Pg.101]

Aryl- and alkenylcarbene complexes are known to react with alkynes through a [3C+2S+1C0] cycloaddition reaction to produce benzannulated compounds. This reaction, known as the Dotz reaction , is widely reviewed in Chap. Chromium-Templated Benzannulation Reactions , p. 123 of this book. However, simple alkyl-substituted carbene complexes react with excess of an alkyne (or with diynes) to produce a different benzannulated product which incorporates in its structure two molecules of the alkyne, a carbon monoxide ligand and the carbene carbon [128]. As referred to before, this [2S+2SH-1C+1C0] cycloaddition reaction can be carried out with diyne derivatives, showing these reactions give better yields than the corresponding intermolecular version (Scheme 80). [Pg.112]

Keywords Fischer carbene complex [3+2+1 ] -benzannulation reaction Asymmetric benzannulation Linear benzannulation... [Pg.124]

The first and rate-determining step involves carbon monoxide dissociation from the initial pentacarbonyl carbene complex A to yield the coordinatively unsaturated tetracarbonyl carbene complex B (Scheme 3). The decarbonyla-tion and consequently the benzannulation reaction may be induced thermally, photochemically [2], sonochemically [3], or even under microwave-assisted conditions [4]. A detailed kinetic study by Dotz et al. proved that the initial reaction step proceeds via a reversible dissociative mechanism [5]. More recently, density functional studies on the preactivation scenario by Sola et al. tried to propose alkyne addition as the first step [6],but it was shown that this... [Pg.125]

Structural analogues of the /]4-vinylketene E were isolated by Wulff, Rudler and Moser [15]. The enaminoketene complex 11 was obtained from an intramolecular reaction of the chromium pentacarbonyl carbene complex 10. The silyl vinylketene 13 was isolated from the reaction of the methoxy(phenyl)-carbene chromium complex 1 and a silyl-substituted phenylacetylene 12, and -in contrast to alkene carbene complex 7 - gave the benzannulation product 14 after heating to 165 °C in acetonitrile (Scheme 6). The last step of the benzannulation reaction is the tautomerisation of the /]4-cyclohexadienone F to afford the phenol product G. The existence of such an intermediate and its capacity to undergo a subsequent step was validated by Wulff, who synthesised an... [Pg.127]

Amino(aryl)carbene complexes prefer cyclopentannulation over benzannulation. Amino(alkenyl)carbene complexes may react in a benzannulation reaction. [Pg.130]

The superior donor properties of amino groups over alkoxy substituents causes a higher electron density at the metal centre resulting in an increased M-CO bond strength in aminocarbene complexes. Therefore, the primary decarbo-nylation step requires harsher conditions moreover, the CO insertion generating the ketene intermediate cannot compete successfully with a direct electro-cyclisation of the alkyne insertion product, as shown in Scheme 9 for the formation of indenes. Due to that experience amino(aryl)carbene complexes are prone to undergo cyclopentannulation. If, however, the donor capacity of the aminocarbene ligand is reduced by N-acylation, benzannulation becomes feasible [22]. [Pg.131]

Wulff et al. examined the necessary reaction conditions for a,fi-unsaturated aminocarbene complexes to react in a benzannulation reaction [23]. The reaction of dimethylamino(alkenyl)carbene complexes 18 with terminal alkynes in non-coordinating and non-polar solvents afforded phenol products in acceptable yields (Scheme 12). [Pg.131]

Scheme 12 Benzannulation of alkenyl(dimethylamino)carbene complexes... Scheme 12 Benzannulation of alkenyl(dimethylamino)carbene complexes...
The electrophilic carbene carbon atom of Fischer carbene complexes is usually stabilised through 7i-donation of an alkoxy or amino substituent. This type of electronic stabilisation renders carbene complexes thermostable nevertheless, they have to be stored and handled under inert gas in order to avoid oxidative decomposition. In a typical benzannulation protocol, the carbene complex is reacted with a 10% excess of the alkyne at a temperature between 45 and 60 °C in an ethereal solvent. On the other hand, the non-stabilised and highly electrophilic diphenylcarbene pentacarbonylchromium complex needs to be stored and handled at temperatures below -20 °C, which allows one to carry out benzannulation reactions at room temperature [34]. Recently, the first syntheses of tricyclic carbene complexes derived from diazo precursors have been performed and applied to benzannulation [35a,b]. The reaction of the non-planar dibenzocycloheptenylidene complex 28 with 1-hexyne afforded the Cr(CO)3-coordinated tetracyclic benzannulation product 29 in a completely regio- and diastereoselective way [35c] (Scheme 18). [Pg.134]

Scheme 27 Rigid chiral carbene complex chelates in diastereoselective benzannulation... Scheme 27 Rigid chiral carbene complex chelates in diastereoselective benzannulation...
Scheme 29 Tandem benzannulation-Mitsunobu reaction of a chiral decalin-derived carbene complex... Scheme 29 Tandem benzannulation-Mitsunobu reaction of a chiral decalin-derived carbene complex...
A similar tandem Dotz-Mitsunobu reaction has been reported starting from a l,6-methano[10]annulene carbene complex, but no conclusion could be reached on the influence of the chiral information regarding the stereoselective course of the reaction since the chromium fragment could not be kept coordinated to the benzannulation product [47]. [Pg.139]

Scheme 30 A chiral [2.2]metacyclophane carbene complex in a benzannulation reaction... Scheme 30 A chiral [2.2]metacyclophane carbene complex in a benzannulation reaction...
The use of a stereogenic carbon centre allowed an efficient asymmetric induction in the benzannulation reaction towards axial-chiral intermediates in the synthesis of configurationally stable ring-C-functionalised derivatives of al-locolchicinoids [51]. The benzannulation of carbene complex 52 with 1-pen-tyne followed by oxidative demetalation afforded a single diastereomer 53 (Scheme 33). [Pg.141]

Scheme 34 Manganese carbene complexes in benzannulation reactions... Scheme 34 Manganese carbene complexes in benzannulation reactions...
The fact that pentacarbonyl carbene complexes react with enynes in a chemo-selective and regiospecific way at the alkyne functionality was successfully applied in the total synthesis of vitamins of the Kj and K2 series [58]. Oxidation of the intermediate tricarbonyl(dihydrovitamin K) chromium complexes with silver oxide afforded the desired naphthoquinone-based vitamin K compounds 65. Compared to customary strategies, the benzannulation reaction proved to be superior as it avoids conditions favouring (E)/(Z)-isomerisation within the allylic side chain. The basic representative vitamin K3 (menadione) 66 was synthesised in a straightforward manner from pentacarbonyl carbene complex 1 and propyne (Scheme 38). [Pg.143]

The convergent approach comprises, among other reaction steps, a regio-specific intermolecular benzannulation reaction between the alkyne 88 and the chromium carbene complex 89 for AB ring construction (Scheme 43). It is noteworthy that the regioselectivity of this reaction is attributed to the bulky TBDMS ether in the alkyne a-substituent, that dictates the incorporation of the large substituent ortho to the phenol. Another curiosity is the fact that the reaction failed to provide 90 in the absence of acetic anhydride. [Pg.146]

Nanaomycin A 103 and deoxyfrenolicin 108 are members of a group of naphthoquinone antibiotics based on the isochroman skeleton. The therapeutic potential of these natural products has attracted considerable attention, and different approaches towards their synthesis have been reported [65,66]. The key step in the total synthesis of racemic nanaomycin A 103 is the chemo-and regioselective benzannulation reaction of carbene complex 101 and allylacety-lene 100 to give allyl-substituted naphthoquinone 102 after oxidative workup in 52% yield [65] (Scheme 47). The allyl functionality is crucial for a subsequent intramolecular alkoxycarbonylation to build up the isochroman structure. However, modest yields and the long sequence required to introduce the... [Pg.147]

Merlic developed a new variation of the thermally induced benzannulation reaction. The dienylcarbene complex 132 was reacted with isonitrile to give an orf/zo-alkoxyaniline derivative 135 [76] (Scheme 56). This annulation product is regiocomplementary to those reported from photochemical reaction of chromium dienyl(amino)carbene complexes. The metathesis of the isocyanide with the dienylcarbene complex 132 generates a chromium-complexed di-enylketenimine intermediate 133 which undergoes electrocyclisation. Final tau-tomerisation and demetalation afford the orf/zo-alkoxyaniline 135. [Pg.151]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

The thermal benzannulation of Group 6 carbene complexes with alkynes (the Dotz reaction) is highly developed and has been used extensively in synthesis [90,91]. It is thought to proceed through a chromium vinylketene intermediate generated by sequential insertion of the alkyne followed by carbon monoxide into the chromium-carbene-carbon double bond [92]. The realization that photodriven CO insertion into Z-dienylcarbene complexes should generate the same vinylketene intermediate led to the development of a photochemical variant of the Dotz reaction (Table 14). [Pg.178]

Benzo[ifc,/]xanthenes result from the chromium-mediated benzannulation of the carbene complex (20) <96CC895>, whilst the photooxidative cyclisation of ( )-2-styrylchromones (21) leads to benzo[a]xanthones <96HCM251>. [Pg.300]

Key words Dotz reaction, benzannulation, Fischer carbene complexes, reaction mechanism, density functional theory... [Pg.269]

Figure 2. Benzannulation vs. cyclopentannulation in Fischer carbene complexes. Figure 2. Benzannulation vs. cyclopentannulation in Fischer carbene complexes.
Despite the undeniable synthetic value of the benzannulation reaction of aryl and alkenyl Fischer carbene complexes, the details of its mechanism at the molecular level remain to be ascertained. Indeed, although a relatively large number of theoretical studies have been directed to the study of the molecular and electronic structure of Fischer carbene complexes [22], few studies have been devoted to the analysis of the reaction mechanisms of processes involving this kind of complexes [23-30]. The aim of this work is to present a summary of our theoretical research on the reaction mechanism of the Dotz reaction between ethyne and vinyl-substituted hydroxycarbene species to yield p-hydroxyphenol. [Pg.271]

In addition to reactions characteristic of carbonyl compounds, Fischer-type carbene complexes undergo a series of transformations which are unique to this class of compounds. These include olefin metathesis [206,265-267] (for the use as metathesis catalysts, see Section 3.2.5.3), alkyne insertion, benzannulation and other types of cyclization reaction. Generally, in most of these reactions electron-rich substrates (e.g. ynamines, enol ethers) react more readily than electron-poor compounds. Because many preparations with this type of complex take place under mild conditions, Fischer-type carbene complexes are being increasingly used for the synthesis [268-272] and modification [103,140,148,273] of sensitive natural products. [Pg.36]

There are only a few reactions in which substituted benzenes are constructed in one step and with predictable regioselectivity. Carbene-complex-mediated benzannulations are one of these. Because of the scarcity of reliable benzannulation reactions, the use of carbene complexes for this purpose has become one of the most valuable synthetic applications of these organometallic reagents. [Pg.49]

Aryl(dialkylamino)carbene chromium complexes do not yield aminonaphthols upon treatment with alkynes, but form indene derivatives. Vinyl(dialkylamino)car-bene complexes, however, react with alkynes to yield aminophenols as the main products if solvents of low nucleophilicity are used [335]. (2-Amino-1-vinyl)carbene complexes do not undergo benzannulation when treated with alkynes, but form cyclopentadienes or heterocycles instead [251]. [Pg.52]

In addition to the reaction of vinylcarbene complexes with alkynes, further synthetic procedures have been developed in which Fischer-type carbene complexes are used for the preparation of benzenes. Most of these transformations are likely to be mechanistically related to the Dbtz benzannulation reaction, and can be rationalized as sequences of alkyne-insertions, CO-insertions, and electrocycli-zations. A selection of examples is given in Table 2.18. Entry 4 in Table 2.18 is an example of the Diels-Alder reaction (with inverse electron demand) of an enamine with a pyran-2-ylidene complex (see also Section 2.2.7 and Figure 2.36). In this example the adduct initially formed eliminates both chromium hexacarbonyl ([4 -I- 2] cycloreversion) and pyrrolidine to yield a substituted benzene. [Pg.55]

Depending on the types of substituents and the precise reaction conditions (l,3-butadien-l-yl)carbene complexes can undergo direct cyclization to yield cyclo-pentadienes [337,350]. As mentioned in Section 2.2.5.1, cyclopentadiene formation occurs particularly easily with aminocarbene complexes [351]. Alternatively, in particular at higher reaction temperatures, CO-insertion can lead to the formation of a vinylketene complex, which, again depending on the electronic properties of the substituents and the reaction conditions, can cyclize to yield cyclobutenones, furans [91,352], cyclopentenones, furanones [91], or phenols (Dotz benzannulation) [207,251,353]. [Pg.57]

In addition to the benzannulation reactions discussed in Section 2.2.5, other reactions of heteroatom-substituted carbene complexes are known which lead to the formation of six-membered rings. Alkoxycarbene complexes have a reactivity... [Pg.66]

If the Ddtz benzannulation reaction is conducted with ori/zo-disubstituted aryl-carbene complexes, the final aromatization step is blocked and cyclohexadienones can be isolated (Figure 2.34) [356,378,379]. [Pg.67]


See other pages where Benzannulation carbene complexes is mentioned: [Pg.62]    [Pg.124]    [Pg.126]    [Pg.127]    [Pg.133]    [Pg.133]    [Pg.137]    [Pg.138]    [Pg.139]    [Pg.141]    [Pg.144]    [Pg.145]    [Pg.152]    [Pg.181]    [Pg.278]    [Pg.65]   
See also in sourсe #XX -- [ Pg.1098 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.1098 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Benzannulation

© 2024 chempedia.info