Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Behaviour defined

In each step in tliis multi-level process, the inference rule essentially activates what has previously been built. Tlierefore, if the last build was the appUcation specification, we can offer data (since that is what the application expects), and activate tlie application with tliat data, using the inference rule. Tliis will illustrate the functional behaviour actually captured in the specification, which may or may not be the same as eitlier what tlie specifier intended or wliat the client wanted There is an analogy to testing tlie correctness of a program with data, but here it is tlie correctness of the behaviour defined by tlie specification tliat is being tested by reasoning tliat is, without any code having been written. [Pg.56]

Chapter 3 discusses the thermodynamic fundamentals of equilibrium behaviour, defines equilibrium criteria and indicates briefly the possibilities of their characterization. [Pg.5]

Once fundamental group characteristics are identified, behaviours defined as permitted need to be detected whilst the vehicles remains mobile. [Pg.112]

For gas reactions where the gases are assumed to follow ideal behaviour this equation becomes AG° = RT]n Kp, where Kp is defined in terms of the partial pressures of reactants and products. Thus for the general reaction above,... [Pg.161]

One of the major differences in fluid flow behaviour for gas fields compared to oil fields is the mobility difference between gas and oil or water. Recall the that mobility is an indicator of how fast fluid will flow through the reservoir, and is defined as... [Pg.196]

Wlien = N/2, the value of g is decreased by a factor of e from its maximum atm = 0. Thus the fractional widtii of the distribution is AOr/A i M/jV)7 For A 10 the fractional width is of the order of 10 It is the sharply peaked behaviour of the degeneracy fiinctions that leads to the prediction that the thennodynamic properties of macroscopic systems are well defined. [Pg.380]

This behaviour is characteristic of thennodynamic fluctuations. This behaviour also implies the equivalence of various ensembles in the thermodynamic limit. Specifically, as A —> oo tire energy fluctuations vanish, the partition of energy between the system and the reservoir becomes uniquely defined and the thennodynamic properties m microcanonical and canonical ensembles become identical. [Pg.399]

A situation that arises from the intramolecular dynamics of A and completely distinct from apparent non-RRKM behaviour is intrinsic non-RRKM behaviour [9], By this, it is meant that A has a non-random P(t) even if the internal vibrational states of A are prepared randomly. This situation arises when transitions between individual molecular vibrational/rotational states are slower than transitions leading to products. As a result, the vibrational states do not have equal dissociation probabilities. In tenns of classical phase space dynamics, slow transitions between the states occur when the reactant phase space is metrically decomposable [13,14] on the timescale of the imimolecular reaction and there is at least one bottleneck [9] in the molecular phase space other than the one defining the transition state. An intrinsic non-RRKM molecule decays non-exponentially with a time-dependent unimolecular rate constant or exponentially with a rate constant different from that of RRKM theory. [Pg.1011]

In practice, e.g., in nature or in fonnulated products, colloidal suspensions (also denoted sols or dispersions) tend to be complex systems, consisting of many components that are often not very well defined, in tenns of particle size for instance. Much progress has been made in the understanding of colloidal suspensions by studying well defined model systems, which allow for a quantitative modelling of their behaviour. Such systems will be discussed here. [Pg.2667]

Colloidal dispersions often display non-Newtonian behaviour, where the proportionality in equation (02.6.2) does not hold. This is particularly important for concentrated dispersions, which tend to be used in practice. Equation (02.6.2) can be used to define an apparent viscosity, happ, at a given shear rate. If q pp decreases witli increasing shear rate, tire dispersion is called shear tliinning (pseudoplastic) if it increases, tliis is known as shear tliickening (dilatant). The latter behaviour is typical of concentrated suspensions. If a finite shear stress has to be applied before tire suspension begins to flow, tliis is known as tire yield stress. The apparent viscosity may also change as a function of time, upon application of a fixed shear rate, related to tire fonnation or breakup of particle networks. Thixotropic dispersions show a decrease in q, pp with time, whereas an increase witli time is called rheopexy. [Pg.2673]

For tire purjDoses of tliis review, a nanocrystal is defined as a crystalline solid, witli feature sizes less tlian 50 nm, recovered as a purified powder from a chemical syntliesis and subsequently dissolved as isolated particles in an appropriate solvent. In many ways, tliis definition shares many features witli tliat of colloids , defined broadly as a particle tliat has some linear dimension between 1 and 1000 nm [1] tire study of nanocrystals may be drought of as a new kind of colloid science [2]. Much of die early work on colloidal metal and semiconductor particles stemmed from die photophysics and applications to electrochemistry. (See, for example, die excellent review by Henglein [3].) However, the definition of a colloid does not include any specification of die internal stmcture of die particle. Therein lies die cmcial distinction in nanocrystals, die interior crystalline stmcture is of overwhelming importance. Nanocrystals must tmly be little solids (figure C2.17.1), widi internal stmctures equivalent (or nearly equivalent) to drat of bulk materials. This is a necessary condition if size-dependent studies of nanometre-sized objects are to offer any insight into die behaviour of bulk solids. [Pg.2899]

The definition above is a particularly restrictive description of a nanocrystal, and necessarily limits die focus of diis brief review to studies of nanocrystals which are of relevance to chemical physics. Many nanoparticles, particularly oxides, prepared dirough die sol-gel niediod are not included in diis discussion as dieir internal stmcture is amorjihous and hydrated. Neverdieless, diey are important nanoniaterials several textbooks deal widi dieir syndiesis and properties [4, 5]. The material science community has also contributed to die general area of nanocrystals however, for most of dieir applications it is not necessary to prepare fully isolated nanocrystals widi well defined surface chemistry. A good discussion of die goals and progress can be found in references [6, 7, 8 and 9]. Finally, diere is a rich history in gas-phase chemical physics of die study of clusters and size-dependent evaluations of dieir behaviour. This topic is not addressed here, but covered instead in chapter C1.1, Clusters and nanoscale stmctures, in diis same volume. [Pg.2899]

The local dynamics of tire systems considered tluis far has been eitlier steady or oscillatory. However, we may consider reaction-diffusion media where tire local reaction rates give rise to chaotic temporal behaviour of tire sort discussed earlier. Diffusional coupling of such local chaotic elements can lead to new types of spatio-temporal periodic and chaotic states. It is possible to find phase-synchronized states in such systems where tire amplitude varies chaotically from site to site in tire medium whilst a suitably defined phase is synclironized tliroughout tire medium 51. Such phase synclironization may play a role in layered neural networks and perceptive processes in mammals. Somewhat suriDrisingly, even when tire local dynamics is chaotic, tire system may support spiral waves... [Pg.3067]

Keeping all of the flow regime conditions identical to the previous example, we now consider a finite element model based on treating silicon rubber as a viscoelastic fluid whose constitutive behaviour is defined by the following upper-convected Maxwell equation... [Pg.152]

Female sexual development and behaviour in mammals occurs by default and requires no ovarian secretion, and it is only in genetic males that the testis can secrete hormones which destroy this female pattern and superimpose that of the male. Sexual differentiation is not so well defined in fish, and larval exposure to both synthetic estrogens and androgens is widely used in aquaculture to produce monosex cultures. Endocrine disruption of sexual differentiation in fish may therefore reflect both the complexity and diversity of such processes between different species. Some care is required in use of the terms hermaphrodite and sex-reversal since a true hermaphrodite has both functional testes and ovaries and a sex-reversed fish is fully functional as its final sex—both produce the appropriate viable gametes. Such functional sex-reversal is not possible in mammals, but in some species of fish it is the normal developmental pattern. In most of the cases of hermaphroditism or sex-reversal reported in the non-scientific press, there is evidence only for a few ovarian follicles within a functional testis. This may be considered as feminisation or a form of intersex, and is very clearly endocrine disruption, but it is certainly neither sex-reversal nor hermaphroditism. In some cases the terms have even been used to infer induction of a single female characteristic such as production of yolk-protein by males. [Pg.41]


See other pages where Behaviour defined is mentioned: [Pg.159]    [Pg.252]    [Pg.314]    [Pg.159]    [Pg.28]    [Pg.478]    [Pg.175]    [Pg.229]    [Pg.22]    [Pg.304]    [Pg.159]    [Pg.252]    [Pg.314]    [Pg.159]    [Pg.28]    [Pg.478]    [Pg.175]    [Pg.229]    [Pg.22]    [Pg.304]    [Pg.106]    [Pg.308]    [Pg.390]    [Pg.490]    [Pg.632]    [Pg.759]    [Pg.884]    [Pg.891]    [Pg.1069]    [Pg.1292]    [Pg.1573]    [Pg.1870]    [Pg.1925]    [Pg.13]    [Pg.25]    [Pg.21]    [Pg.158]    [Pg.334]    [Pg.448]    [Pg.9]    [Pg.12]    [Pg.184]    [Pg.260]    [Pg.427]    [Pg.54]    [Pg.84]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



© 2024 chempedia.info