Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiple reactions batch reactors

Energy balance— batch reactor— multiple reactions... [Pg.256]

Multiple reactions in parallel producing byproducts. Consider again the system of parallel reactions from Eqs. (2.16) and (2.17). A batch or plug-flow reactor maintains higher average concentrations of feed (Cfeed) than a continuous well-mixed reactor, in which the incoming feed is instantly diluted by the PRODUCT and... [Pg.29]

Chapter 1 treated single, elementary reactions in ideal reactors. Chapter 2 broadens the kinetics to include multiple and nonelementary reactions. Attention is restricted to batch reactors, but the method for formulating the kinetics of complex reactions will also be used for the flow reactors of Chapters 3 and 4 and for the nonisothermal reactors of Chapter 5. [Pg.35]

The component balance for a batch reactor. Equation (1.21), still holds when there are multiple reactions. However, the net rate of formation of the component may be due to several different reactions. Thus,... [Pg.37]

Chapter 2 developed a methodology for treating multiple and complex reactions in batch reactors. The methodology is now applied to piston flow reactors. Chapter 3 also generalizes the design equations for piston flow beyond the simple case of constant density and constant velocity. The key assumption of piston flow remains intact there must be complete mixing in the direction perpendicular to flow and no mixing in the direction of flow. The fluid density and reactor cross section are allowed to vary. The pressure drop in the reactor is calculated. Transpiration is briefly considered. Scaleup and scaledown techniques for tubular reactors are developed in some detail. [Pg.81]

The extension to multiple reactions is done by writing Equation (3.1) (or the more complicated versions of Equation (3.1) that will soon be developed) for each of the N components. The component reaction rates are found from Equation (2.7) in exactly the same ways as in a batch reactor. The result is an initial value problem consisting of N simultaneous, first-order ODEs that can be solved using your favorite ODE solver. The same kind of problem was solved in Chapter 2, but the independent variable is now z rather than t. [Pg.82]

Chapter 2 treated multiple and complex reactions in an ideal batch reactor. The reactor was ideal in the sense that mixing was assumed to be instantaneous and complete throughout the vessel. Real batch reactors will approximate ideal behavior when the characteristic time for mixing is short compared with the reaction half-life. Industrial batch reactors have inlet and outlet ports and an agitation system. The same hardware can be converted to continuous operation. To do this, just feed and discharge continuously. If the reactor is well mixed in the batch mode, it is likely to remain so in the continuous mode, as least for the same reaction. The assumption of instantaneous and perfect mixing remains a reasonable approximation, but the batch reactor has become a continuous-flow stirred tank. [Pg.117]

A batch or plug-flow reactor should be used for multiple reactions in series. [Pg.92]

Milestone [23] have produced a range of MW reactor systems for organic synthesis, including a quartz or ceramic MW reactor (MRS) for high pressure (up to 4 MPa) and temperature reactions, designed for large volume batch synthesis and a multiple batch reactor MPR/HPR for up to 12 vessels, with volumes 2-270 mL for operation at 3.5-10 MPa. [Pg.117]

Multiple Reactions—Choosing a reactor type to obtain the best selectivity can often be made by inspection of generalized cases in reaction engineering books. A quantitative treatment of selectivity as a function of kinetics and reactor type (batch and CSTR) for various multiple reaction systems (consecutive and parallel) is presented in [168]. [Pg.110]


See other pages where Multiple reactions batch reactors is mentioned: [Pg.83]    [Pg.31]    [Pg.1099]    [Pg.27]    [Pg.505]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.39]    [Pg.41]    [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.314]    [Pg.343]    [Pg.329]    [Pg.375]    [Pg.211]    [Pg.207]    [Pg.1272]    [Pg.263]    [Pg.164]   
See also in sourсe #XX -- [ Pg.129 , Pg.137 ]




SEARCH



Batch multiple reactions

Batch reaction

Batch reactor

Multiple reactions

Multiple reactors

Reaction multiple reactions

Reactor multiple reactions

Reactors batch reactor

Reactors reaction

© 2024 chempedia.info