Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Band structure in metals

In the mid-1970 s, other teams were created within the framework of former CMOA Earl Evleth (an organic chemist from UCSB) Jean Maruani (symmetries and properties of non-rigid molecules) Pierre Becker (molecular structure by X-ray and neutron diffraction) Nicole Gupta (band structure in metal alloys) as well as other groups from the existing teams. [Pg.309]

Semiconductors differ from metals by their electronic band structure. In metals, the valence band is only partially occupied by electrons and overlaps with the conduction band (Figure 3.52). Valence electrons can easily access non-occupied states and move under the influence of an applied electric field. Semiconductors and... [Pg.109]

O.K. Andersen, O. Jepsen, and D. Glotzel, Canoi- al Description of the Band Structures of Metals, in Highlights of Condensed-Matter Theory, edited by F. Bassani, F. Fumi, and M.P. Tosi, North Holland, New York (1985). [Pg.61]

To describe the band structure of metals, we use the approach employed above to describe the bonding in molecules. First, we consider a chain of two atoms. The result is the same as that obtained for a homonuclear diatomic molecule we find two energy levels, the lower one bonding and the upper one antibonding. Upon adding additional atoms, we obtain an additional energy level per added electron, until a continuous band arises (Fig. 6.9). To describe the electron band of a metal in a... [Pg.229]

The electronic properties of CNTs, and especially their band structure, in terms of DOS, is very important for the interfacial electron transfer between a redox system in solution and the carbon electrode. There should be a correlation between the density of electronic states and electron-transfer reactivity. As expected, the electron-transfer kinetics is faster when there is a high density of electronic states with energy values in the range of donor and acceptor levels in the redox system [2]. Conventional metals (Pt, Au, etc.) have a large DOS in the electrochemical potential... [Pg.123]

Band Theory of Metals, Three approaches predict the electronic band structure of metals. The first approach (Kronig-Penney), the periodic potential method, starts with free electrons and then considers nearly bound electrons. The second (Ziman) takes into account Bragg reflection as a strong disturbance in the propagation of electrons. The third approach (Feynman) starts with completely bound electrons to atoms and then considers a linear combination of atomic orbitals (LCAOs). [Pg.29]

Early band structure calculations for the actinide metals were made both with and without relativistic effects. As explained above, at least the mass velocity and Darwin shifts should be included to produce a relativistic band structure. For this reason we shall discuss only the relativistic calculations. There were some difficulties with the f-band structure in these studies caused by the f-asymptote problem , which have since been elegantly solved by linear methods . Nevertheless the non-self-consistent RAPW calculations for Th through Bk indicated some interesting trends that have also been found in more recent self-consistent calculations ... [Pg.278]

Andersen, O.K., Jepsen, O. and Glotzel, D. (1985). Canonical description of the band structures of metals. In Highlights of Condensed-Matter Theory, Soc. Ital. Fis. Corso 89, 59-176. [Pg.205]

The low temperature heat capacity is often used for the study of the band structure of metals and alloys since it yields direct information about the density of states. Neglecting magnetic contributions at low temperatures, the heat capacity of a solid consists of contributions owing to the lattice and, for metals, to the free electrons. For metals, the lattice contribution is masked by the electronic contribution, but the two can be separated. Derive the expression for the total heat capacity given the information in the preceding paragraph. [Pg.181]

The electrical property of a material is determined by its electronic structure, and the relevant theory that explains the electronic structure in the solid state is band theory. This theory, however, does not fully explain conductivity in polymers. It is noteworthy that the energy spacing between the highest occupied and lowest unoccupied bands is called the bandgap the highest occupied band is called the valence band and the lowest unoccupied band is called the conduction band. The bandgaps of insulators and semiconductors are wide and narrow, respectively there are no band-gaps in metals. [Pg.528]

We summarize our survey as follows. The extraordinary instabilities and fluctuation effects characteristic of a hypothetical one-dimensional metal are quenched rapidly as the effective dimensionality is increased. Hence we should expect that the physics of a nearly one-dimensional conductor should be especially sensitive to the effective interchain coupling. This is particularly true in two-band organic systems based upon the prototype TIF-TCN3, where the one-electron band structure in the undistorted state is nominally seminetall.ic, and the shape of the Fermi surface and density of states at the Fermi level are dominated by interchain charge-transfer integrals. [Pg.334]

B. TSeF-TCNQ (x=l). I will relate the lowering of the metal-insulator transition temperature in TSeF-TCNQ in comparison to TTF-TCNQ to their different band structures. In particular the difference will be shown to relate to the magnitude of the overlap between the donor and acceptor wave functions, which will be referred to in this talk as the a axis hybridization. [Pg.419]


See other pages where Band structure in metals is mentioned: [Pg.195]    [Pg.75]    [Pg.360]    [Pg.195]    [Pg.75]    [Pg.360]    [Pg.301]    [Pg.279]    [Pg.139]    [Pg.138]    [Pg.249]    [Pg.42]    [Pg.128]    [Pg.171]    [Pg.32]    [Pg.414]    [Pg.239]    [Pg.57]    [Pg.527]    [Pg.234]    [Pg.125]    [Pg.99]    [Pg.254]    [Pg.133]    [Pg.115]    [Pg.125]    [Pg.498]    [Pg.389]    [Pg.407]    [Pg.77]    [Pg.51]    [Pg.331]    [Pg.150]    [Pg.249]    [Pg.71]    [Pg.422]    [Pg.201]    [Pg.381]   


SEARCH



Band structure

Band structure bands

Banded structures

Metallic band

© 2024 chempedia.info