Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bacteriophages structure

Wilrz M (1992) Bacteriophage structure. Electron Microscopy Reviews 5 283-310. [Pg.3125]

Eiserling, F. a., Romig, W. R. Studies of Bacillus suhtilis bacteriophages Structural characterization by electron microscopy, J. Ultrastruct. Res. 6, 540-546 (1962). Epstein, H. T. Transfection enhancement by ultraviolet light. Biochem. biophys. Res. Commun. 27, 258-262 (1967). [Pg.84]

In the first edition of this book this chapter was entitled "Antiparallel Beta Structures" but we have had to change this because an entirely unexpected structure, the p helix, was discovered in 1993. The p helix, which is not related to the numerous antiparallel p structures discussed so far, was first seen in the bacterial enzyme pectate lyase, the stmcture of which was determined by the group of Frances Jurnak at the University of California, Riverside. Subsequently several other protein structures have been found to contain p helices, including extracellular bacterial proteinases and the bacteriophage P22 tailspike protein. [Pg.84]

The number of helical turns in these structures is larger than those found so far in two-sheet p helices. The pectate lyase p helix consists of seven complete turns and is 34 A long and 17-27 A in diameter (Figure 5.30) while the p-helix part of the bacteriophage P22 tailspike protein has 13 complete turns. Both these proteins have other stmctural elements in addition to the P-helix moiety. The complete tailspike protein contains three intertwined, identical subunits each with the three-sheet p helix and is about 200 A long and 60 A wide. Six of these trimers are attached to each phage at the base of the icosahedral capsid. [Pg.85]

Figure 8.1 A region of DNA in the related bacteriophages lambda, 434, and P22 that controls the switch for synthesis of new phage particles. Two structural genes are involved in this switch one coding for a repressor protein and one coding for the Cro protein. Between these genes there is an operator region (OR) that contains three protein binding sites—ORl, OR2, and OR3. Figure 8.1 A region of DNA in the related bacteriophages lambda, 434, and P22 that controls the switch for synthesis of new phage particles. Two structural genes are involved in this switch one coding for a repressor protein and one coding for the Cro protein. Between these genes there is an operator region (OR) that contains three protein binding sites—ORl, OR2, and OR3.
Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]... Figure 8.3 The DNA-binding protein Cro from bacteriophage lambda contains 66 amino acid residues that fold into three a helices and three P strands, (a) A plot of the Ca positions of the first 62 residues of the polypeptide chain. The four C-terminal residues are not visible in the electron density map. (b) A schematic diagram of the subunit structure. a helices 2 and 3 that form the helix-turn-helix motif ate colored blue and red, respectively. The view is different from that in (a), [(a) Adapted from W.F. Anderson et al., Nature 290 754-758, 1981. (b) Adapted from D. Ohlendorf et al., /. Mol. Biol. 169 757-769, 1983.]...
Anderson, W.F., et al. Structure of the Cro repressor from bacteriophage X and its interaction with DNA. [Pg.148]

Ohlendorf, D.H., et al. Comparison of the structures of Cro and X repressor proteins from bacteriophage X. [Pg.149]

One of the most striking results that has emerged from the high-resolution crystallographic studies of these icosahedral viruses is that their coat proteins have the same basic core structure, that of a jelly roll barrel, which was discussed in Chapter 5. This is true of plant, insect, and mammalian viruses. In the case of the picornaviruses, VPl, VP2, and VP3 all have the same jelly roll structure as the subunits of satellite tobacco necrosis virus, tomato bushy stunt virus, and the other T = 3 plant viruses. Not every spherical virus has subunit structures of the jelly roll type. As we will see, the subunits of the RNA bacteriophage, MS2, and those of alphavirus cores have quite different structures, although they do form regular icosahedral shells. [Pg.335]

The structures of many different plant, insect, and animal spherical viruses have now been determined to high resolution, and in most of them the subunit structures have the same jelly roll topology. However, a very different fold of the subunit was found in bacteriophage MS2, whose structure was determined to 3 A resolution by Karin Valegard in the laboratory of Lars Liljas, Uppsala. [Pg.339]

Figure 16.17 The subunit structure of the bacteriophage MS2 coat protein is different from those of other sphericai viruses. The 129 amino acid polypeptide chain is folded into an up-and-down antiparallei P sheet of five strands, P3-P7, with a hairpin at the amino end and two C-terminai a helices. (Adapted from a diagram provided by L. Liijas.)... Figure 16.17 The subunit structure of the bacteriophage MS2 coat protein is different from those of other sphericai viruses. The 129 amino acid polypeptide chain is folded into an up-and-down antiparallei P sheet of five strands, P3-P7, with a hairpin at the amino end and two C-terminai a helices. (Adapted from a diagram provided by L. Liijas.)...
Figure 16.19 Schematic drawing illustrating the structure and sequence of the RNA fragment that is recognized and bound by the coat protein of bacteriophage MS2. The RNA fragment forms a base-paired stem with a bulge at base -10 and a loop of four bases. Bases that form sequence-specific Interactions with the coat protein are red. (Adapted from a diagram provided by L. Llljas.)... Figure 16.19 Schematic drawing illustrating the structure and sequence of the RNA fragment that is recognized and bound by the coat protein of bacteriophage MS2. The RNA fragment forms a base-paired stem with a bulge at base -10 and a loop of four bases. Bases that form sequence-specific Interactions with the coat protein are red. (Adapted from a diagram provided by L. Llljas.)...
Lysozyme from bacteriophage T4 is a 164 amino acid polypeptide chain that folds into two domains (Figure 17.3) There are no disulfide bridges the two cysteine residues in the amino acid sequence, Cys 54 and Cys 97, are far apart in the folded structure. The stability of both the wild-type and mutant proteins is expressed as the melting temperature, Tm, which is the temperature at which 50% of the enzyme is inactivated during reversible beat denat-uration. For the wild-type T4 lysozyme the Tm is 41.9 °C. [Pg.354]

When a virus multiplies, the genome becomes released from the coat. This process occurs during the infection process. The present chapter is divided into three parts. The first part deals with basic concepts of virus structure and function. The second part deals with the nature and manner of multiplication of the bacterial viruses (bacteriophages). In this part we introduce the basic molecular biology of virus multiplication. The third part deals with important groups of animal viruses, with emphasis on molecular aspects of animal virus multiplication. [Pg.108]

The basic problem of virus replication can be simply put the virus must somehow induce a living host cell to synthesize all of the essential components needed to make more virus particles. These components must then be assembled into the proper structure and the new virus particles must escape from the cell and infect other cells. The various phases of this replication process in a bacteriophage can be categorized in seven steps ... [Pg.120]

Figure 5.13 The RNA of bacteriophage MS2. The molecule is single stranded but there are extensive regions of complementary bases, so that pairing within the strand leads to the secondary structure shown. Note that the start sites for three coding regions are in the same part of the folded molecule. Figure 5.13 The RNA of bacteriophage MS2. The molecule is single stranded but there are extensive regions of complementary bases, so that pairing within the strand leads to the secondary structure shown. Note that the start sites for three coding regions are in the same part of the folded molecule.

See other pages where Bacteriophages structure is mentioned: [Pg.533]    [Pg.714]    [Pg.41]    [Pg.542]    [Pg.509]    [Pg.220]    [Pg.533]    [Pg.714]    [Pg.41]    [Pg.542]    [Pg.509]    [Pg.220]    [Pg.129]    [Pg.130]    [Pg.325]    [Pg.339]    [Pg.344]    [Pg.372]    [Pg.436]    [Pg.437]    [Pg.438]    [Pg.440]    [Pg.536]    [Pg.318]    [Pg.379]    [Pg.178]    [Pg.1193]    [Pg.86]    [Pg.91]    [Pg.130]    [Pg.143]    [Pg.157]   
See also in sourсe #XX -- [ Pg.64 , Pg.64 ]




SEARCH



Bacteriophage

Scale Irreversible Quaternary Structure Changes in Double-Stranded DNA Bacteriophage

Three-dimensional structures bacteriophage

© 2024 chempedia.info