Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azeotropic mixture separation

On many occasions, general geometric theory of distillation allows development of flowsheets of multicomponent azeotropic mixture separation without using such special methods as distillation under two pressures or heteroazeotropic and extractive distillation with entrainers (i.e., with additional components injected into the unit). [Pg.35]

In Section 2.8, we discuss several methods of azeotropic mixtures separation. Thus, the azeotropic mixtures are characterized by a limited separability, while processed in an individual distillation column, and complete separability of these mixtures will be achievable in the case of selection of special schemes consisting of several columns with recycles. [Pg.37]

The approximate calculation method of minimum reflux mode (Koehler, Aguirre, Blass, 1991) - the method of the smallest angle, which holds good for mixtures with any component numbers and for any sphts, including frequently found at azeotropic mixtures separation cases of tangential pinch, is based on the calculation of reversible distillation trajectories for the given product compositions. [Pg.110]

The feasibility of azeotropic mixture separation and bringing in fight entrainer in vapor phase into the cross-section lower than the main feed was shown along with regular extractive distillation (Kiva et al., 1983). [Pg.181]

Mixtures with low relative volatility or which exhibit azeotropic behavior. The most common means of dealing with the separation of low-relative-volatility and azeotropic mixtures is to use extractive or azeotropic distillation. These processes are considered in detail later. Crystallization and liquid-liquid extraction also can be used. [Pg.75]

If an azeotropic mixture is to be separated by distillation, then use of pressure change to alter the azeotropic composition should be considered before use of an extraneous mass-separating agent. Avoiding the use of extraneous materials often can prevent environmental problems later in the design. [Pg.92]

Pure acrylonitrile boils at 78°. Acrylonitrile vapour is highly toxic it should therefore be handled with due caution and all operations with it should be conducted in a fume cupboard provided with an efficient draught. Acrylonitrile forms an azeotropic mixture with water, b.p. 70-5° (12-5 per cent, water). The commercial product may contain tte polymer it should be redistilled before use and the fraction b.p. 76 -5-78° collected separately as a colourless liquid. [Pg.916]

The principle of azeotropic distillation depends on the abiHty of a chemically dissimilar compound to cause one or both components of a mixture to boil at a temperature other than the one expected. Thus, the addition of a nonindigenous component forms an azeotropic mixture with one of the components of the mixture, thereby lowering the boiling point and faciHtating separation by distillation. The separation of components of similar volatiHty may become economical if an entrainer can be found that effectively changes the relative volatiHty. It is also desirable that the entrainer be reasonably cheap, stable, nontoxic, and readily recoverable from the components. In practice, it is probably the ready recoverabiHty that limits the appHcation of extractive and azeotropic distillation. [Pg.202]

Distillation (qv) is the most widely used separation technique in the chemical and petroleum industries. Not aU. Hquid mixtures are amenable to ordinary fractional distillation, however. Close-boiling and low relative volatihty mixtures are difficult and often uneconomical to distill, and azeotropic mixtures are impossible to separate by ordinary distillation. Yet such mixtures are quite common (1) and many industrial processes depend on efficient methods for their separation (see also Separation systems synthesis). This article describes special distillation techniques for economically separating low relative volatihty and azeotropic mixtures. [Pg.179]

Of these five methods all but pressure-swing distillation can also be used to separate low volatiUty mixtures and all but reactive distillation are discussed herein. It is also possible to combine distillation and other separation techniques such as Hquid—Hquid extraction (see Extraction, liquid-liquid), adsorption (qv), melt crystallization (qv), or pervaporation to complete the separation of azeotropic mixtures. [Pg.181]

Fig. 17. Column sequence for separating a binary heterogeneous azeotropic mixture, and B, where represents the process feed mole fraction, (a)... Fig. 17. Column sequence for separating a binary heterogeneous azeotropic mixture, and B, where represents the process feed mole fraction, (a)...
The choice of the appropriate azeotropic distillation method and the resulting flowsheet for the separation of a particular mixture are strong functions of the separation objective. For example, it may be desirable to recover all constituents of the original feed mixture as pure components, or only some as pure components and some as azeotropic mixtures suitable for recycle. Not every objective may be obtainable by azeotropic distillation for a given mixture and portfolio of candidate entrainers. [Pg.1307]

The simplest case of combining T E and LLE is the separation of a binaiy heterogeneous azeotropic mixture. One example is the dehydration of 1-butanol, a self-entraining system, in which butanol (117.7°C) and water form a minimum-boiling heterogeneous azeotrope (93.0°C). As shown in Fig. 13-69, the fresh feed may be added... [Pg.1312]

In most cases, systems deviate to a greater or lesser extent from Raoult s law, and vapour pressures may be greater or less than the values calculated. In extreme cases (e.g. azeotropes), vapour pressure-composition curves pass through maxima or minima, so that attempts at fractional distillation lead finally to the separation of a constantboiling (azeotropic) mixture and one (but not both) of the pure species if either of the latter is present in excess. [Pg.9]

Materials are sometimes added to form an azeotropic mixture with the substance to be purified. Because the azeotrope boils at a different temperature, this facilitates separation from substances distilling in the same range as the pure material. (Conversely, the impurity might form the azeotrope and be removed in this way). This method is often convenient, especially where the impurities are isomers or are otherwise closely related to the desired substance. Formation of low-boiling azeotropes also facilitates distillation. [Pg.13]

One or more of the following methods can generally be used for separating the components of an azeotropic mixture ... [Pg.13]

The major advantage of the use of two-phase catalysis is the easy separation of the catalyst and product phases. FFowever, the co-miscibility of the product and catalyst phases can be problematic. An example is given by the biphasic aqueous hydro-formylation of ethene to propanal. Firstly, the propanal formed contains water, which has to be removed by distillation. This is difficult, due to formation of azeotropic mixtures. Secondly, a significant proportion of the rhodium catalyst is extracted from the reactor with the products, which prevents its efficient recovery. Nevertheless, the reaction of ethene itself in the water-based Rh-TPPTS system is fast. It is the high solubility of water in the propanal that prevents the application of the aqueous biphasic process [5]. [Pg.259]

Column 3. In this column the water is separated and sent to waste treatment. The overhead product consists of the azeotropic mixture of ethanol and water (89 per cent ethanol, 11 per cent water). The overheads are condensed and recycled to join the feed to the first column. The bottom product is essentially free of ethanol. [Pg.190]

A procedure that has been widely used for spray residues is the separation of the residue from the sample by extraction with an organic solvent, usually benzene. After most of the solvent has been removed, the residue is treated with sodium and isopropyl alcohol and the chloride ion is estimated by standard methods. Carter 10) has determined in this manner DDT residues on a number of crops, and he has recommended the adoption by the Association of Official Agricultural Chemists of the method as a tentative one for DDT 11). Koblitsky and Chisholm 42) have determined DDT in soil samples by the sodium-isopropyl alcohol procedure after removing the DDT by extraction with an azeotropic mixture of two volumes of benzene and one volume of isopropyl alcohol. [Pg.66]

If the azeotrope is not sensitive to changes in pressure, then an entrainer can be added to the distillation to alter in a favorable way the relative volatility of the key components. Before the separation of an azeotropic mixture using an entrainer is considered, the representation of azeotropic distillation in ternary diagrams needs to be introduced. [Pg.236]


See other pages where Azeotropic mixture separation is mentioned: [Pg.566]    [Pg.52]    [Pg.53]    [Pg.55]    [Pg.148]    [Pg.566]    [Pg.52]    [Pg.53]    [Pg.55]    [Pg.148]    [Pg.83]    [Pg.47]    [Pg.9]    [Pg.305]    [Pg.180]    [Pg.182]    [Pg.182]    [Pg.183]    [Pg.190]    [Pg.1248]    [Pg.1310]    [Pg.1311]    [Pg.238]    [Pg.66]    [Pg.226]    [Pg.958]    [Pg.181]    [Pg.9]    [Pg.665]    [Pg.19]    [Pg.305]    [Pg.235]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Azeotrope separation

Azeotropic mixture

Azeotropic mixture separation entrainer

Azeotropic mixture separation pressure swing distillation

Azeotropic separations

Mixture separating mixtures

Mixtures separating

Mixtures, separation

Processes for Separating Azeotropic Mixtures

Separating Azeotropic Mixtures

Separation flowsheet synthesis azeotropic mixture

© 2024 chempedia.info