Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic theory electron configuration

Atomic structure Quantum theory Atomic orbitals Electronic configurations Periodic table Ionization energies Electron affinities... [Pg.1]

Atomic Structure The Nucleus Atomic Structure Orbitals 4 Atomic Structure Electron Configurations 6 Development of Chemical Bonding Theory 7 The Nature of Chemical Bonds Valence Bond Theory sp Hybrid Orbitals and the Structure of Methane 12 sp Hybrid Orbitals and the Structure of Ethane 13 sp2 Hybrid Orbitals and the Structure of Ethylene 14 sp Hybrid Orbitals and the Structure of Acetylene 17 Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur 18 The Nature of Chemical Bonds Molecular Orbital Theory 20 Drawing Chemical Structures 21 Summary 24... [Pg.1140]

A vexing puzzle m the early days of valence bond theory concerned the fact that methane is CH4 and that the four bonds to carbon are directed toward the corners of a tetrahedron Valence bond theory is based on the overlap of half filled orbitals of the connected atoms but with an electron configuration of s 2s 2p 2py carbon has only two half filled orbitals (Figure 2 8a) How can it have bonds to four hydrogens ... [Pg.64]

A mark of the success of this theory lies in the fact that no low lying superfluous / levels have been found which defy classification according to a plausible electronic configuration for the atom in question. On the other hand, there are sometimes predicted levels which have not yet been observed as in the case of three of the six terms for the s2p3 configuration in carbon (Moore [1949]). [Pg.28]

Figure 5. Niels Bohr came up with the idea that the energy of orbiting electrons would be in discrete amounts, or quanta. This enabled him to successfully describe the hydrogen atom, with its single electron, In developing the remainder of his first table of electron configurations, however, Bohr clearly relied on chemical properties, rather than quantum theory, to assign electrons to shells. In this segment of his configuration table, one can see that Bohr adjusted the number of electrons in nitrogen s inner shell in order to make the outer shell, or the reactive shell, reflect the element s known trivalency. Figure 5. Niels Bohr came up with the idea that the energy of orbiting electrons would be in discrete amounts, or quanta. This enabled him to successfully describe the hydrogen atom, with its single electron, In developing the remainder of his first table of electron configurations, however, Bohr clearly relied on chemical properties, rather than quantum theory, to assign electrons to shells. In this segment of his configuration table, one can see that Bohr adjusted the number of electrons in nitrogen s inner shell in order to make the outer shell, or the reactive shell, reflect the element s known trivalency.
The origin of electronic configuration Is frequently and inaccurately attributed to Niels Bohr, who introduced quantum theory to tire study of the atom. But Bohr essentially tidied up Thomson s pre-quantum configurations and took advantage of a more accurate knowledge erf the number of electrons each of the elements actually possessed. Furtlrer developments in quantum theory, including Pauli s occlusion principle and Schrodjtiger s equation. [Pg.117]

When we try to apply VB theory to methane we run into difficulties. A carbon atom has the configuration [HeJ2s22pvl2p l,1 with four valence electrons (34). However, two valence electrons are already paired and only the two half-filled 2/ -orbitals appear to be available for bonding. It looks as though a carbon atom should have a valence of 2 and form two perpendicular bonds, but in fact it almost always has a valence of 4 (it is commonly tetravalent ) and in CH4 has a tetrahedral arrangement of bonds. [Pg.231]

What Do We Need to Know Already This chapter draws on many of the principles introduced in the preceding chapters. In particular, it makes use of the electron configurations of atoms and ions (Sections 1.13 and 2.1) and the classification of species as Lewis acids and bases (Section 10.2). Molecular orbital theory (Sections 3.8 through 3.12) plays an important role in Section 16.12. [Pg.776]

This theory was advanced by G. N. Lewis (1916, 1923, 1938) as a more general concept. In his classic monograph of 1923 he considered and rejected both the protonic and solvent system theories as too restrictive. An acid-base reaction in the Lewis sense means the completion of the stable electronic configuration of the acceptor atom of the acid by an electron pair from the base. Thus ... [Pg.17]

Ligand field theory mainly considers the last contribution. For this contribution the geometric distribution of the ligands is irrelevant as long as the electrons of the central atom have a spherical distribution the repulsion energy is always the same in this case. All half and fully occupied electron shells of an atom are spherical, namely d5 high-spin and dw (and naturally d°). This is not so for other d electron configurations. [Pg.77]

The same role that H plays in the theory of complex atoms may be expected for Hj as the prototype from which to generalize electron configurations of complex molecules. The molecular generalization must clearly... [Pg.366]

The concept of valence developed in the preceding section is the basis of the first correlations aiming at a global theory of the actinide metallic bond. These correlations were established between the atomic volumes of actinide elemental metals, and the electronic configuration of the actinide atoms Their aim was to provide a general theory of actinides (i.e. to give an answer to the questions i. and ii. of Sect. A.I.l.) within the framework of a simple model of the metallic bond. [Pg.6]

The periodic trend of a decrease in atomic radii across a period is readily seen in the Figure 6.4. Other properties related to atomic radii show a similar pattern. Knowing that the elements exhibit a general periodic trend allows us to predict unknown properties for elements and aided in the discovery of unknown elements. The periodic nature of the elements supported the development of the quantum theory. The elements show a periodic pattern in both their properties and electron configurations. The periodic trend in properties of the elements... [Pg.66]


See other pages where Atomic theory electron configuration is mentioned: [Pg.2]    [Pg.2]    [Pg.133]    [Pg.531]    [Pg.113]    [Pg.358]    [Pg.28]    [Pg.50]    [Pg.27]    [Pg.921]    [Pg.19]    [Pg.27]    [Pg.37]    [Pg.37]    [Pg.39]    [Pg.41]    [Pg.42]    [Pg.146]    [Pg.36]    [Pg.11]    [Pg.185]    [Pg.36]    [Pg.79]    [Pg.35]    [Pg.137]    [Pg.165]    [Pg.169]    [Pg.105]    [Pg.66]    [Pg.240]    [Pg.154]    [Pg.28]    [Pg.87]    [Pg.172]    [Pg.11]    [Pg.159]    [Pg.17]   
See also in sourсe #XX -- [ Pg.338 , Pg.339 , Pg.340 , Pg.341 , Pg.342 , Pg.343 , Pg.344 , Pg.345 ]




SEARCH



Atomic theory

Atoms electron configuration

Atoms theory

Configuration atomic electron

Configurational atom

Electron configuration theory

Electronic configuration atoms

© 2024 chempedia.info