Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum configuration

The origin of electronic configuration Is frequently and inaccurately attributed to Niels Bohr, who introduced quantum theory to tire study of the atom. But Bohr essentially tidied up Thomson s pre-quantum configurations and took advantage of a more accurate knowledge erf the number of electrons each of the elements actually possessed. Furtlrer developments in quantum theory, including Pauli s occlusion principle and Schrodjtiger s equation. [Pg.117]

The term quantization or quantum configuration means here the kind of subdivision of the electronic system into definite groups (quanticules). For instance, Na+Cl- contains two mononuclear quanticules 1 2 and 1 2 3 , while H+ejH+ contains one binuclear quanticule e. See Fajans, K. Chimia 13, 349 (1959). Lithoprinted English translation at Ulrich s Book Store, Ann Arbor, Michigan. [Pg.98]

Summarizing, it suffices to mention that, instead of these ambiguities to which the concept of a fractional ionic character of a resonance bond led in the case of the molecules CsF, SrO, BaO, the conclusion of the quanticule-polarization interpretation reads as follows the quantum configuration is Cs+F-, Sr +0 , Ba +0 , the degree of polarity is 0.699, 0.483, 0.426 respectively. [Pg.103]

Knowledge of internal molecular motions became a serious quest with Boyle and Newton, at the very dawn of modem natural science. Flowever, real progress only became possible with the advent of quantum theory in the 20th century. The study of internal molecular motion for most of the century was concerned primarily with molecules near their equilibrium configuration on the PES. This gave an enonnous amount of inunensely valuable infonuation, especially on the stmctural properties of molecules. [Pg.80]

It is possible to use the quantum states to predict the electronic properties of the melt. A typical procedure is to implement molecular dynamics simulations for the liquid, which pemiit the wavefiinctions to be detemiined at each time step of the simulation. As an example, one can use the eigenpairs for a given atomic configuration to calculate the optical conductivity. The real part of tire conductivity can be expressed as... [Pg.133]

I i i(q,01 in configuration space, e.g. as defined by the possible values of the position coordinates q. This motion is given by the time evolution of the wave fiinction i(q,t), defined as die projection ( q r(t)) of the time-dependent quantum state i i(t)) on configuration space. Since the quantum state is a complete description of the system, the wave packet defining the probability density can be viewed as the quantum mechanical counterpart of the classical distribution F(q- i t), p - P t)). The time dependence is obtained by solution of the time-dependent Schrodinger equation... [Pg.1057]

Figure A3.13.9. Probability density of a microcanonical distribution of the CH cliromophore in CHF within the multiplet with cliromophore quantum nmnber V= 6 (A. g = V+ 1 = 7). Representations in configuration space of stretching and bending (Q coordinates (see text following (equation (A3.13.62)1 and figure A3.13.10). Left-hand side typical member of the microcanonical ensemble of the multiplet with V= 6... Figure A3.13.9. Probability density of a microcanonical distribution of the CH cliromophore in CHF within the multiplet with cliromophore quantum nmnber V= 6 (A. g = V+ 1 = 7). Representations in configuration space of stretching and bending (Q coordinates (see text following (equation (A3.13.62)1 and figure A3.13.10). Left-hand side typical member of the microcanonical ensemble of the multiplet with V= 6...
The mean-field potential and the need to improve it to aohieve reasonably aeourate solutions to the true eleotronio Selirodinger equation introduoe three oonstniots that oharaoterize essentially all ab initio quantum ohemioal methods orbitals, configurations and electron correlation. [Pg.2161]

In most of the connnonly used ab initio quantum chemical methods [26], one fonns a set of configurations by placing N electrons into spin orbitals in a maimer that produces the spatial, spin and angular momentum syimnetry of the electronic state of interest. The correct wavefimction T is then written as a linear combination of tire mean-field configuration fimctions qj = example, to describe the... [Pg.2164]

These approaches provide alternatives to the conventional tools of quantum chemistry. The Cl, MCSCF, MPPT/MBPT, and CC methods move beyond the single-configuration picture by adding to the wavefimction more configurations whose amplitudes they each detennine in their own way. This can lead to a very large number of CSFs in the correlated wavefimction and, as a result, a need for extraordinary computer resources. [Pg.2179]

First-principles models of solid surfaces and adsorption and reaction of atoms and molecules on those surfaces range from ab initio quantum chemistry (HF configuration interaction (Cl), perturbation theory (PT), etc for details see chapter B3.1 ) on small, finite clusters of atoms to HF or DFT on two-dimensionally infinite slabs. In between these... [Pg.2221]

The spin in quantum mechanics was introduced because experiments indicated that individual particles are not completely identified in terms of their three spatial coordinates [87]. Here we encounter, to some extent, a similar situation A system of items (i.e., distributions of electrons) in a given point in configuration space is usually described in terms of its set of eigenfunctions. This description is incomplete because the existence of conical intersections causes the electronic manifold to be multivalued. For example, in case of two (isolated) conical intersections we may encounter at a given point m configuration space four different sets of eigenfunctions (see Section Vni). [Pg.667]

Krypton is found to be an extremely unreactive element indicating that it has a stable electronic configuration despite the fact that the n = 4 quantum le el can accommodate 24 more electrons in the d and / orbitals. [Pg.8]

Note. The electronic configuratioa of any element can easily be obtained from the periodic table by adding up the numbers of electrons in the various quantum levels. We can express these in several ways, for example electronic configuration of nickel can be written as ls 2s 2p 3s 3d 4s. or more briefly ( neon core ) 3d 4s, or even more simply as 2. 8. 14. 2... [Pg.9]

There are many compounds which do not conduct electricity when solid or fused indicating that the bonding is neither metallic nor ionic. Lewis, in 1916. suggested that in such cases bonding resulted from a sharing of electrons. In the formation of methane CH4 for example, carbon, electronic configuration l.s 2.s 2p. uses the tour electrons in the second quantum level to form four equivalent... [Pg.36]

Boron achieves a covalency of three by sharing its three outer electrons, for example BFj (p. 153). By accepting an electron pair from a donor molecule or ion, boron can achieve a noble gas configuration whilst increasing its covalency to four, for example H3N->BCl3. K BF4. This is the maximum for boron and the second quantum level is now complete these 4-coordinate species are tetrahedral (p. 38). [Pg.140]

The elements in this group have six electrons in their outer quantum level, and can thus achieve a noble gas configuration by acquiring two electrons. [Pg.257]

Numerous ionic compounds with halogens are known but a noble gas configuration can also be achieved by the formation of a covalent bond, for example in halogen molecules, X2, and hydrogen halides, HX. When the fluorine atom acquires one additional electron the second quantum level is completed, and further gain of electrons is not energetically possible under normal circumstances, i.e... [Pg.312]


See other pages where Quantum configuration is mentioned: [Pg.98]    [Pg.21]    [Pg.182]    [Pg.98]    [Pg.21]    [Pg.182]    [Pg.48]    [Pg.152]    [Pg.246]    [Pg.327]    [Pg.447]    [Pg.894]    [Pg.1138]    [Pg.2189]    [Pg.2485]    [Pg.253]    [Pg.256]    [Pg.258]    [Pg.382]    [Pg.386]    [Pg.400]    [Pg.400]    [Pg.501]    [Pg.8]    [Pg.8]    [Pg.14]    [Pg.17]    [Pg.28]    [Pg.139]    [Pg.152]    [Pg.7]    [Pg.365]    [Pg.367]    [Pg.372]    [Pg.429]   
See also in sourсe #XX -- [ Pg.334 ]




SEARCH



© 2024 chempedia.info