Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic structure proton

A representation of atomic structure. The various spheres are not drawn to scale. The lump of iron on the left would contain almost a million million million million (10 ) atoms, one of which is represented by the sphere in the top center of the page. In turn, each atom is composed of a number of electrons, protons, and neutrons. For example, an atom of the element iron contains 26 electrons, 26 protons, and 30 neutrons. The physical size of the atom is determined mainly by the number of electrons, but almost all of its mass is determined by the number of protons and neutrons in its dense core or nucleus (lower part of figure). The electrons are spread out around the nucleus, and their number determines atomic size but the protons and neutrons compose a very dense, small core, and their number determines atomic mass. [Pg.336]

The spatial localization of H atoms in H2 and HD crystals found from analysis of the hyperfine structure of the EPR spectrum, is caused by the interaction of the uncoupled electron with the matrix protons [Miyazaki 1991 Miyazaki et al. 1991]. The mean distance between an H atom and protons of the nearest molecules was inferred from the ratio of line intensities for the allowed (without change in the nuclear spin projections. Am = 0) and forbidden (Am = 1) transitions. It equals 3.6-4.0 A and 2.3 A for the H2 and HD crystals respectively. It follows from comparison of these distances with the parameters of the hep lattice of H2 that the H atoms in the H2 crystal replace the molecules in the lattice nodes, while in the HD crystal they occupy the octahedral positions. [Pg.113]

Partial structure Protons Sh CH a one bond Sc C Sc atoms separated by two or three bonds Sc Sc Sc Sc Sc... [Pg.233]

Str-ucture determines properties and the properties of atoms depend on atomic structure. All of an element s protons are in its nucleus, but the element s electrons are distributed among orbitals of var ying energy and distance from the nucleus. More than anything else, we look at its electron configuration when we wish to understand how an element behaves. The next section illustrates this with a brief review of ionic bonding. [Pg.10]

Figure 4.1 Schematic of the atomic structure of the active three-phase interface between the metal particle that catalyzes the reaction, the carbon support necessary to conduct electrons, and the polymer electrolyte and solution necessary to conduct protons for electrocatalytic systems. Figure 4.1 Schematic of the atomic structure of the active three-phase interface between the metal particle that catalyzes the reaction, the carbon support necessary to conduct electrons, and the polymer electrolyte and solution necessary to conduct protons for electrocatalytic systems.
NMR provides one of the most powerful techniques for identification of unknown compounds based on high-resolution proton spectra (chemical shift type integration relative numbers) or 13C information (number of nonequivalent carbon atoms types of carbon number of protons at each C atom). Structural information may be obtained in subsequent steps from chemical shifts in single-pulse NMR experiments, homo- and heteronuclear spin-spin connectivities and corresponding coupling constants, from relaxation data such as NOEs, 7) s 7is, or from even more sophisticated 2D techniques. In most cases the presence of a NOE enhancement is all that is required to establish the stereochemistry at a particular centre [167]. For a proper description of the microstructure of a macromolecule NMR spectroscopy has now overtaken IR spectroscopy as the analytical tool in general use. [Pg.328]

Cu-Cu 3.153 A).279 They also structurally characterized a complex similar to complex (310) (r = 0.17), with a water molecule as solvent of crystallization and without the N02 substituent in the ligand.279 Neves et al.2S0 reported an interesting structure (complex (318)) in which the two phenol oxygen atoms remain protonated and coordinate to copper in an axial fashion. [Pg.807]

In the early part of the twentieth century, then, a simple model of atomic structure became accepted, now known as the Rutherford nuclear model of the atom, or, subsequently, the Bohr-Rutherford model. This supposed that most of the mass of the atom is concentrated in the nucleus, which consists of protons (positively charged particles) and neutrons (electrically neutral particles, of approximately the same mass). The number of protons in the nucleus is called the atomic number, which essentially defines the nature of... [Pg.229]

Only a few relevant points about the atomic structures are summarized in the following. Table 4.1 collects basic data about the fundamental physical constants of the atomic constituents. Neutrons (Jn) and protons (ip), tightly bound in the nucleus, have nearly equal masses. The number of protons, that is the atomic number (Z), defines the electric charge of the nucleus. The number of neutrons (N), together with that of protons (A = N + Z) represents the atomic mass number of the species (of the nuclide). An element consists of all the atoms having the same value of Z, that is, the same position in the Periodic Table (Moseley 1913). The different isotopes of an element have the same value of Z but differ in the number of neutrons in their nuclei and therefore in their atomic masses. In a neutral atom the electronic envelope contains Z electrons. The charge of an electron (e ) is equal in size but of opposite sign to that of a proton (the mass ratio, mfmp) is about 1/1836.1527). [Pg.224]

Structural information on aromatic donor molecule binding was obtained initially by using H NMR relaxation measurements to give distances from the heme iron atom to protons of the bound molecule. For example, indole-3-propionic acid, a structural homologue of the plant hormone indole-3-acetic acid, was found to bind approximately 9-10 A from the heme iron atom and at a particular angle to the heme plane (234). The disadvantage of this method is that the orientation with respect to the polypeptide chain cannot be defined. Other donor molecules examined include 4-methylphenol (p-cresol) (235), 3-hydroxyphenol (resorcinol), 2-methoxy-4-methylphenol and benzhydroxamic acid (236), methyl 2-pyridyl sulfide and methylp-tolyl sulfide (237), and L-tyrosine and D-tyrosine (238). Distance constraints of between 8.4 and 12.0 A have been reported (235-238). Aromatic donor proton to heme iron distances of 6 A reported earlier for aminotriazole and 3-hydroxyphenol (resorcinol) are too short because of an inappropriate estimate of the molecular correlation time (239), a parameter required for the calculations. Distance information for a series of aromatic phenols and amines bound to Mn(III)-substituted HRP C has been published (240). [Pg.139]

The exploration of atomic structure began in 1911, when Ernest Rutherford, a New Zealander who worked in Canada and England, discovered that atoms had a dense central nucleus that contained positively charged particles, which he named protons. (See Table 3-1.) it was soon established that each chemical element was characterized by a specific number of protons in each atom. A hydrogen atom has 1 proton, helium has 2, lithium has 3, and so forth through the periodic table. The atomic number is the number of protons for each element. [Pg.28]

The detection of other molecules, such as ammonia, requires the use of a porous catalytic metal. To obtain a gas response from the NH3 molecule, it is believed that active sites of triple points are required where the molecules are in contact with the metal, insulator, and ambient [30, 31]. It has been shown that gas species such as hydrogen atoms or protons also diffuse out onto the exposed oxide surface in between the metal grains [Figure 2.1(b)] [32, 33]. Furthermore, Lofdahl et al. have performed experiments that provide clear evidence that hydrogen atoms or protons also diffuse under the metal from the triple point [34]. The hollow structure of the metal surface facing the insulator has been revealed by Abom et al. [35]. [Pg.33]

For two and three dimensions, it provides a crude but useful picture for electronic states on surfaces or in crystals, respectively. Free motion within a spherical volume gives rise to eigenfunctions that are used in nuclear physics to describe the motions of neutrons and protons in nuclei. In the so-called shell model of nuclei, the neutrons and protons fill separate s, p, d, etc orbitals with each type of nucleon forced to obey the Pauli principle. These orbitals are not the same in their radial shapes as the s, p, d, etc orbitals of atoms because, in atoms, there is an additional radial potential V(r) = -Ze2/r present. However, their angular shapes are the same as in atomic structure because, in both cases, the potential is independent of 0 and (f>. This same spherical box model has been used to describe the orbitals of valence electrons in clusters of mono-valent metal atoms such as Csn, Cu , Na and their positive and negative ions. Because of the metallic nature of these species, their valence electrons are sufficiently delocalized to render this simple model rather effective (see T. P. Martin, T. Bergmann, H. Gohlich, and T. Lange, J. Phys. Chem. 95, 6421 (1991)). [Pg.21]

Before discussing structure and bonding in molecules, let s first review some fundamentals of atomic structure. Each element is characterized by a unique atomic number Z, which is equal to the number of protons in its nucleus. A neutral atom has equal numbers of protons, which are positively charged, and electrons, which are negatively charged. [Pg.14]

The nature of the surface acidity is dependent on the temperature of activation of the NH4-faujasite. With a series of samples of NH4—Y zeolite calcined at temperatures in the range of 200° to 800°C, Ward 148) observed that pyridine-exposed samples calcined below 450°C displayed a strong infrared band at 1545 cm-1, corresponding to pyridine bound at Brpnsted (protonic) sites. As the temperature of calcination was increased, the intensity of the 1545-cm 1 band decreased and a band appeared at 1450 cm-1, resulting from pyridine adsorbed at Lewis (dehydroxylated) sites. The Brtfnsted acidity increased with calcination temperature up to about 325°C. It then remained constant to 500°C, after which it declined to about 1/10 of its maximum value (Fig. 19). The Lewis acidity was virtually nil until a calcination temperature of 450°C was reached, after which it increased slowly and then rapidly at calcination temperatures above 550°C. This behavior was considered to be a result of the combination of two adjacent hydroxyl groups followed by loss of water to form tricoordinate aluminum atoms (structure I) as suggested by Uytterhoeven et al. 146). Support for the proposed dehydroxylation mechanism was provided by Ward s observations of the relationship of Brpnsted site concentration with respect to Lewis site concentration over a range of calcination tem-... [Pg.142]


See other pages where Atomic structure proton is mentioned: [Pg.15]    [Pg.15]    [Pg.7]    [Pg.245]    [Pg.192]    [Pg.90]    [Pg.115]    [Pg.49]    [Pg.241]    [Pg.211]    [Pg.413]    [Pg.245]    [Pg.41]    [Pg.264]    [Pg.33]    [Pg.370]    [Pg.447]    [Pg.447]    [Pg.255]    [Pg.646]    [Pg.52]    [Pg.222]    [Pg.15]    [Pg.66]    [Pg.145]    [Pg.625]    [Pg.7]    [Pg.66]    [Pg.245]    [Pg.1407]    [Pg.1042]    [Pg.1378]    [Pg.408]    [Pg.13]   
See also in sourсe #XX -- [ Pg.85 ]

See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Atomic structure Neutron Proton

Atomic structure proton-electron theory

Atoms protons

Proton structure

© 2024 chempedia.info