Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic structure proton-electron theory

In Chap. 3 the elementary structure of the atom was introduced. The facts that protons, neutrons, and electrons are present in the atom and that electrons are arranged in shells allow us to explain isotopes (Chap. 3), chemical bonding (Chap. 5), and much more. However, with this simple theory, we still have not been able to deduce why the transition metal groups and inner transition metal groups arise, and many other important generalities. In this chapter we introduce a more detailed description of the electronic structure of the atom which begins to answer some of these more difficult questions. [Pg.51]

An atom of hydrogen consists of one proton (constituting the nucleus) and one electron. This simplicity of atomic structure means that H is of great importance in theoretical chemistry, and has been central in the development of atomic and bonding theories (see Chapter 1). The nuclear properties of the hydrogen atom are essential to the technique of H NMR spectroscopy (see Section 2.11). [Pg.236]

In this zoo of particles, only the electron, which was discovered even before the atomic theory was proven and the atomic structure was known, is really unseeable, stable, and isolatable. The proton also is stable and isolatable, but it is made up of two quarks up (with charge -1-2/3) and one quark down (with charge —1/3). As for the quarks, while expected to be stable, they have not been isolated. The other particle constitutive of the atomic nucleus, the neutron, is also made up of three quarks, one up and two down, but it is not stable when isolated, decaying into a proton, an electron, and an antineutrino (with a 15-min lifetime). The fermions in each of the higher two classes of the electron family (muon and tau) and of the two quark families (strange charmed and bottom/top) are unstable (and not isolatable for the quarks). Only the elusive neutrinos in the three classes, which were postulated to ensure conservation laws in weak interaction processes, are also considered as being unseeable, stable, and isolatable. [Pg.24]

But if we are concerned with more complex aspects of nuclear structure, the liquid drop model of the nucleus won t do. Suppose we are interested, for example, in the pattern of stability and instability that governs the collection of nuclear isotopes. Why is there a line of stability about which the stable nuclei are concentrated, with deviation from that line, which is plotted with numbers of protons and numbers of neutrons as axes, indicating the likelihood that the nucleus in question will be unstable Much insight can be gained from a model that treats the nucleons in the nucleus as moving on orbits in an overall potential field. Here, the nucleons are treated as if they were like the electrons in their orbits that surround the nucleus in the atom. Numbers are assigned that are parallels to the familiar quantum numbers of atomic electron theory, and orbits for the nucleons in the nucleus characterized by these quantum numbers are posited. Just... [Pg.246]

Heisenberg theory of atomic structure hl-zon-borg- n. The currently accepted view of the structure of atoms, formulated by Heisenberg in 1934, according to which the atomic nuclei are built of nucleons, which may be protons or neutrons, while the ex-tranudear shells consist of electrons only. If m and m are given in grams, and r in centimeters, F will be in dynes if k = 6.670 X 10 . ... [Pg.488]

Obviously the structures and yields of Birch reduction products are determined at the two protonation stages. The ring positions at which both protonations occur are determined kinetically the first protonation or 7t-complex collapse is rate determining and irreversible, and the second protonation normally is irreversible under the reaction conditions. In theory, the radical-anion could protonate at any one of the six carbon atoms of the ring and each of the possible cyclohexadienyl carbanions formed subsequently could protonate at any one of three positions. Undoubtedly the steric and electronic factors discussed above determine the kinetically favored positions of protonation, but at present it is difficult to evaluate the importance of each factor in specific cases. A brief summary of some empirical and theoretical data regarding the favored positions of protonation follows. [Pg.17]

From 50 years to 100 years after Dalton proposed his theory, various discoveries showed that the atom is not indivisible, but really is composed of parts. Natural radioactivity and the interaction of electricity with matter are two different types of evidence for this subatomic structure. The most important subatomic particles are listed in Table 3-2, along with their most important properties. The protons and neutrons occur in a very tiny nucleus (plural, nuclei). The electrons occur outside the nucleus. [Pg.45]

Equation 4.9 has been extensively applied to study the mechanisms of electrophilic (e.g., protonation) reactions, drug-nucleic acid interactions, receptor-site selectivities of pain blockers as well as various other kinds of biological activities of molecules in relation to their structure. Indeed, the ESP has been hailed as the most significant discovery in quantum biochemistry in the last three decades. The ESP also occurs in density-based theories of electronic structure and dynamics of atoms, molecules, and solids. Note, however, that Equation 4.9 appears to imply that p(r) of the system remains unchanged due to the approach of a unit positive charge in this sense, the interaction energy calculated from V(r) is correct only to first order in perturbation theory. However, this is not a serious limitation since using the correct p(r) in Equation 4.9 will improve the results. [Pg.43]

Heterocyclic systems have played an important role in this historical development. In addition to pyridine and thiophene mentioned earlier, a third heterocyclic system with one heteroatom played a crucial part protonation and methylation of 4//-pyrone were found by J. N. Collie and T. Tickle in 1899 to occur at the exocyclic oxygen atom and not at the oxygen heteroatom, giving a first hint for the jr-electron sextet theory based on the these arguments.36 Therefore, F. Arndt, who proposed in 1924 a mesomeric structure for 4//-pyrone, should also be considered among the pioneers who contributed to the theory of the aromatic sextet.37 These ideas were later refined by Linus Pauling, whose valence bond theory (and the electronegativity, resonance and hybridization concepts) led to results similar to Hiickel s molecular orbital theory.38... [Pg.10]

We shall see that most of the reactions of simple carbonyl compounds, like formaldehyde, are a consequence of the presence of an electron-deficient carbon atom. This is accounted for in resonance theory by a contribution from the resonance structure with charge separation (see Section 7.1). The second example shows the so-called conjugate acid of acetone, formed to some extent by treating acetone with acid (see Section 7.1). Protonation in this way typically activates acetone towards reaction, and we... [Pg.49]


See other pages where Atomic structure proton-electron theory is mentioned: [Pg.2]    [Pg.823]    [Pg.109]    [Pg.110]    [Pg.52]    [Pg.7]    [Pg.124]    [Pg.55]    [Pg.4]    [Pg.54]    [Pg.87]    [Pg.124]    [Pg.157]    [Pg.35]    [Pg.131]    [Pg.306]    [Pg.858]    [Pg.251]    [Pg.1]    [Pg.51]    [Pg.29]    [Pg.1637]    [Pg.19]    [Pg.420]    [Pg.217]    [Pg.227]    [Pg.405]    [Pg.630]    [Pg.9]    [Pg.56]    [Pg.1683]    [Pg.109]    [Pg.15]    [Pg.134]    [Pg.217]    [Pg.342]    [Pg.146]    [Pg.981]   
See also in sourсe #XX -- [ Pg.204 ]




SEARCH



Atomic structure electrons

Atomic structure proton

Atomic theory

Atoms electronic structures

Atoms protons

Atoms theory

Electron proton

Electron protonation

Proton structure

Structural theory

Structure theory

© 2024 chempedia.info