Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic optical emission spectroscopy detectors

Multielement analysis will become more important in industrial hygiene analysis as the number of elements per sample and the numbers of samples increases. Additional requirements that will push development of atomic absorption techniques and may encourage the use of new techniques are lower detction and sample speciation. Sample speciation will probably require the use of a chromatographic technique coupled to the spectroscopic instrumentation as an elemental detector. This type of instrumental marriage will not be seen in routine analysis. The use of Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) (17), Zeeman-effect atomic absorption spectroscopy (ZAA) (18), and X-ray fluorescence (XRF) (19) will increase in industrial hygiene laboratories because they each offer advantages or detection that AAS does not. [Pg.263]

The most common type of emission spectrometer in use today (inductively coupled plasma-optical emission spectroscopy, or ICP-OES) atomizes a sample by passing an electric current into a gas plasma that contains the sample. In these optical emission methods, the sample is heated to high temperature. At this temperature the individual elements glow with their representative colors, e.g., red for potassium, yellow for sodium. The light from the sample is focused on a monochrometer to select a wavelength appropriate for the element of interest. That light at the correct wavelength is focused on a detector that measures its intensity (Fig. 4.8). [Pg.84]

This article provides some general remarks on detection requirements for FIA and related techniques and outlines the basic features of the most commonly used detection principles, including optical methods (namely, ultraviolet (UV)-visible spectrophotometry, spectrofluorimetry, chemiluminescence (CL), infrared (IR) spectroscopy, and atomic absorption/emission spectrometry) and electrochemical techniques such as potentiometry, amperometry, voltammetry, and stripping analysis methods. Very few flowing stream applications involve other detection techniques. In this respect, measurement of physical properties such as the refractive index, surface tension, and optical rotation, as well as the a-, //-, or y-emission of radionuclides, should be underlined. Piezoelectric quartz crystal detectors, thermal lens spectroscopy, photoacoustic spectroscopy, surface-enhanced Raman spectroscopy, and conductometric detection have also been coupled to flow systems, with notable advantages in terms of automation, precision, and sampling rate in comparison with the manual counterparts. [Pg.1275]

Compared with the sensors for atoms and radicals, the calibration of EEP sensors is also somewhat specific. To calibrate detectors of atomic particles, it will be generally enough to determine (on the basis of sensor measurements) one of the literature-known constants, say, tiie energy of parent gas dissociation on a hot Hlament. For the detection of EEPs when nonselective excitation of gas is taking place, in order to calibrate a sensor use should be made of some other selective methods detecting EEPs. The calibration method may be optical spectroscopy, chemical and optic titration, emission measurements, etc. [Pg.299]


See other pages where Atomic optical emission spectroscopy detectors is mentioned: [Pg.62]    [Pg.327]    [Pg.30]    [Pg.260]    [Pg.292]    [Pg.67]    [Pg.102]    [Pg.427]    [Pg.304]    [Pg.149]   


SEARCH



Atom optics

Atomic detectors

Atomic emission

Atomic emission spectroscopy

Atomic optical emission spectroscopy

Atomic spectroscopy

Atoms detectors

Detectors atomic spectroscopy

Emission detector

Emission spectroscopy)

Emissivity detector

Optical atomic spectroscopy

Optical emission

Optical spectroscopy

Spectroscopy detectors

© 2024 chempedia.info