Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetrical alkenes, electrophilic addition reactions

Among the transition-metal catalysts that have been used, only those of Pd(II) are productive with diazomethane, which may be the result in cyclopropanation reactions [7,9,21] of a mechanism whereby the Pd-coordinated alkene undergoes electrophilic addition to diazomethane rather than by a metal carbene transformation in any case, asymmetric induction does not occur by using Pd(II) complexes of chiral bis-oxazolines [22],... [Pg.194]

Well before the wide use of organoselenium compounds in chemistry, it was discovered that electrophilic selenium compounds of the type RSeX add stereospecifically to alkenes.45 Since that time this reaction has been an important tool in the portfolio of organic chemists and has been used even for the construction of complex molecules. Comprehensive reviews on this chemistry have appeared46-49 and in recent times the synthesis of chiral selenium electrophiles and their application in asymmetric synthesis has emerged. As shown in Scheme 1, the addition reactions of selenium electrophiles to alkenes are stereospecific anti additions. They involve the initial formation of seleniranium ion intermediates 1 which are immediately opened in the presence of nucleophiles. External nucleophiles lead to the formation of addition products 2. The addition to unsymmetrically substituted alkenes follows the thermodynamically favored Markovnikov orientation. The seleniranium ion intermediates of alkenes with internal nucleophiles such as 3 will be attacked intramolecularly to yield cyclic products 4 and 5 via either an endo or an exo pathway. Depending on the reaction conditions, the formation of the seleniranium ions can be reversible. [Pg.459]

A number of useful enantioselective syntheses can be performed by attaching a chiral auxihary group to the selenium atom of an appropriate reagent. Examples of such chiral auxiliaries include (49-53). Most of the asymmetric selenium reactions reported to date have involved inter- or intramolecular electrophilic additions to alkenes (i.e. enantioselective variations of processes such as shown in equations (23) and (15), respectively) but others include the desymmefrization of epoxides by ringopening with chiral selenolates, asymmetric selenoxide eliminations to afford chiral allenes or cyclohexenes, and the enantioselective formation of allylic alcohols by [2,3]sigmafropic rearrangement of allylic selenoxides or related species. [Pg.4326]

In Chapter 4 we saw that when an alkene reacts with an electrophilic reagent such as HBr, the major product of the addition reaction is the one obtained by adding the electrophile (H ) to the sp carbon bonded to the greater number of hydrogens and adding the nucleophile (Br ) to the other sp carbon. For example, the major product obtained from the reaction of propene with HBr is 2-bromo-propane. This particular product does not have stereoisomers because it does not have an asymmetric carbon. Therefore, we do not have to be concerned with the stereochemistry of this reaction. [Pg.219]

Synthesis of a chiral compormd from an achiral compound requires a prochiral substrate that is selectively transformed into one of the possible stereoisomers. Important prochiral substrates are, for example, alkenes with two different substituents at one of the two C-atoms forming the double bond. Electrophilic addition of a substitutent different from the three existing ones (the two different ones above and the double bond) creates a fourth different substituent and, thus, an asymmetric carbon atom. Another class of important prochiral substrates is carbonyl compounds, which form asymmetric compounds in nucleophilic addition reactions. As exemplified in Scheme 2.2.13, prochiral compounds are characterized by a plane of symmetry that divides the molecule into two enantiotopic halves that behave like mirror images. The side from which the fourth substituent is introduced determines which enantiomer is formed. In cases where the prochiral molecule already contains a center of chirality, the plane of symmetry in the prochiral molecules creates two diastereotopic halves. By introducing the additional substituent diasterom-ers are formed. [Pg.18]

The philicity of a carbene directly depends on the structure of the transition state of an addition reaction. The rules of orbital symmetry conservation forbid the least-motion C2v-symmetry reaction path [41]. For electrophilic carbenes, characterized by predominance of the n — p interaction, preferable is the so-called 7r-approach (Fig. 8.3). In the case of nucleophilic carbenes, optimum conditions for the overlap between the (Tcxy 7r -orbitals are provided by the asymmetrical cr-approach (Fig. 8.3b). By making use of certain assumptions, Rondan, Houk, and Moss [44, 45] calculated the overlap integrals Sjj between the corresponding frontier orbitals of carbene and alkene for the n- and the (7-approaches. Then, having computed the energies of those orbitals, they obtained the energies of stabilization of the composite system arising in two... [Pg.201]

Michael-aldol reaction as an alternative to the Morita-Baylis-Hillman reaction 14 recent results in conjugate addition of nitroalkanes to electron-poor alkenes 15 asymmetric cyclopropanation of chiral (l-phosphoryl)vinyl sulfoxides 16 synthetic methodology using tertiary phosphines as nucleophilic catalysts in combination with allenoates or 2-alkynoates 17 recent advances in the transition metal-catalysed asymmetric hydrosilylation of ketones, imines, and electrophilic C=C bonds 18 Michael additions catalysed by transition metals and lanthanide species 19 recent progress in asymmetric organocatalysis, including the aldol reaction, Mannich reaction, Michael addition, cycloadditions, allylation, epoxidation, and phase-transfer catalysis 20 and nucleophilic phosphine organocatalysis.21... [Pg.288]

The chiral anisole derivative 37 has been used in the synthesis of several asymmetric functionalized cyclohexenes (Table 9) [22]. In a reaction sequence similar to that employed with racemic anisole complexes, 37 adds an electrophile and a nucleophile across C4 and C3, respectively, to form the cyclohexadiene complex 38. The vinyl ether group of 38 can then be reduced by the tandem addition of a proton and hydride to C2 and Cl, respectively, affording the alkene complex 39. Direct oxidation of 39 liberates cydohexenes 40 and 41, in which the initial asymmetric auxiliary is still intact. Alternatively, the auxiliary may be cleaved under acidic conditions to afford /y3 -allyl complexes, which can be regioselectively attacked by another nucleophile at Cl. Oxidative decomplexation liberates the cyclohexenes 42-44. HPLC analysis revealed high ee values for the organic products isolated both with and without the initial asymmetric group. [Pg.309]

Chiral epoxides frequently play a key role as intermediates in organic synthesis and the development of methods for the catalytic asymmetric synthesis of such compounds therefore remains an area of intensive research. Methods have focused principally on the asymmetric electrophilic oxidation of alkenes and good enantioselectivity has been achieved [1]. An alternative to oxidative processes for the synthesis of epoxides is the reaction of sulfur ylides with aldehydes and ketones [2,3,4,5,6]. Sulfur ylide epoxidation is a carbon-carbon bond forming reaction and is complementary to oxidative methods. The standard conditions for this reaction utilize the original Corey method treatment of a sulfonium salt with a strong base in the presence of or followed by the addition of an aldehyde... [Pg.649]

The Sharpless asymmetric epoxidation (sec. 3.4.D.i) exploits this chelation effect because its selectivity arises from coordination of the allylic alcohol to a titanium complex in the presence of a chiral agent. The most effective additive was a tartaric acid ester (tartrate), and its presence led to high enantioselectivity in the epoxidation.23 An example is the conversion of allylic alcohol 40 to epoxy-alcohol 41, in Miyashita s synthesis of the Cg-Ci5 segment of (-t-)-discodermolide.24 in this reaction, the tartrate, the alkenyl alcohol, and the peroxide bind to titanium and provide facial selectivity for the transfer of oxygen from the peroxide to the alkene. Binding of the allylic alcohol to the metal is important for delivery of the electrophilic oxygen and... [Pg.499]


See other pages where Asymmetrical alkenes, electrophilic addition reactions is mentioned: [Pg.287]    [Pg.679]    [Pg.902]    [Pg.124]    [Pg.391]    [Pg.124]    [Pg.391]    [Pg.15]    [Pg.124]    [Pg.282]    [Pg.15]    [Pg.1833]    [Pg.493]    [Pg.443]    [Pg.329]    [Pg.333]    [Pg.334]    [Pg.473]    [Pg.50]    [Pg.317]    [Pg.11]    [Pg.861]    [Pg.2130]    [Pg.391]    [Pg.21]    [Pg.286]    [Pg.412]    [Pg.375]    [Pg.669]    [Pg.861]    [Pg.350]    [Pg.525]    [Pg.880]    [Pg.181]    [Pg.66]   


SEARCH



Addition reactions alkenes

Addition reactions asymmetric

Addition reactions electrophilic

Alkenes asymmetric

Alkenes electrophilic addition

Alkenes, electrophilic

Asymmetric addition

Asymmetric reactions alkenes

Asymmetrical alkene

Electrophiles Addition reactions

Electrophiles alkene addition reactions

© 2024 chempedia.info