Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric reactions types

Zinc-tartrate complexes were applied for reactions of both nitrones and nitrile oxides with allyl alcohol and for both reaction types selectivities of more than 90% ee were obtained. Whereas the reactions of nitrones required a stoichiometric amount of the catalyst the nitrile oxide reactions could be performed in the presence of 20 mol% of the catalyst. This is the only example on a metal-catalyzed asymmetric 1,3-dipolar cycloaddition of nitrile oxides. It should however be no-... [Pg.244]

Many of the chiral allylboron reagents discussed in Section 1.3.3.3.3.1.4. have been utilized in double asymmetric reactions with chiral aldehydes. Chiral 2-(2-butenyl)-3.5-dioxa-4-boratri-cyclo[5.2.1.02-6]decanes were among the first chiral reagents of any type to be used in double asymmetric reactions52a,b. [Pg.298]

In 20 years of usage, a,/J-unsaturated Fischer carbene complexes demonstrated their multitalented versatility in organic synthesis, yet new reaction types are still being discovered every year. In view of their facile preparation and multifold reactivity, their versatile chemistry will undoubtedly be further developed and applied in years to come. The application of chirally modified Fischer carbene complexes in asymmetric synthesis has only begun, and it will probably be an important area of research in the near future. [Pg.54]

Bearing in mind that most asymmetric reactions take place in the liquid phase, we have considered two general types of heterogeneous systems a liquid phase that is immiscible with the reaction phase and a solid phase. [Pg.150]

In a very recent work, the Pd-catalysed cross-coupling reactions with arenediazonium salts under aerobic conditions in the presence of a chiral monothiourea ligand were reported (Scheme 25) [106]. Even if this Hgand bears four chiral centres, no test in asymmetric Heck-type reaction has been described so far. [Pg.248]

The asymmetric Strecker-type reaction developed by the Jacobsen group is suitable for both aUphatic and aromatic imines, giving high enantiomeric excesses for a wide range of substrates. In this reaction the urea derivative also acts as the catalyst (Scheme 36). [Pg.255]

Fig. 40 Formation of (3-lactams via asymmetric Staudinger-type reactions, catalyzed by 64c... Fig. 40 Formation of (3-lactams via asymmetric Staudinger-type reactions, catalyzed by 64c...
Thus, if we can apply the type of asymmetric decarboxylation reactions mentioned above to synthetic substrates, unique asymmetric reactions and C—C bond-forming reactions will be realized which are otherwise difficult to be realized. [Pg.309]

In Section 12.3 stereoselective reactions involving chiral NHCs have been classified in the same manner. Reactions that proceed through a number of these intermediates have been categorised according to the first asymmetric step in the transformation, with a miscellaneous section covering other reaction types. [Pg.264]

Wacker olefin oxidation, which is depicted in its simplest form in Eq. (6.33), contains palladium( 11)-catalyzed hydration of olefin in its important step (Eq. 6.34) and is discussed extensively [62]. In this review article we introduce two asymmetric Wacker type reactions. [Pg.194]

As an extension of this work, these authors have applied this catalyst system to vinylogous asymmetric Mukaiyama-type aldol reactions, involving silyl vinyl ketene acetals and pyruvate esters. These reactions afforded the corresponding y,5-unsaturated a-hydroxy diesters with quaternary centres in high yields and enantioselectivities of up to 99% ee (Scheme 10.25). It was shown that the presence of CF3CH2OH as an additive facilitated the turnover of the catalyst. [Pg.314]

More recently, asymmetric Mannich-type reactions have been studied in aqueous conditions. Barbas and co-worker reported a direct amino acid catalyzed asymmetric aldol and Mannich-type reactions that can tolerate small amounts of water (<4 vol%).53 Kobayashi found that a diastereo- and enantioselective Mannich-type reaction of a hydrazono ester with silyl enol ethers in aqueous media has been successfully achieved with ZnF2, a chiral diamine ligand, and trifluoromethanesul-fonic acid (Eq. 11.31).54 The diastereoselective Mannich-type reaction... [Pg.350]

Heterobimetallic asymmetric complexes contain both Bronsted basic and Lewis acidic functionalities. These complexes have been developed by Shibasaki and coworkers and have proved to be highly efficient catalysts for many types of asymmetric reactions, including catalytic asymmetric nitro-aldol reaction (see Section 3.3) and Michael reaction. They have reported that the multifunctional catalyst (f )-LPB [LaK3tris(f )-binaphthoxide] controls the Michael addition of nitromethane to chalcones with >95% ee (Eq. 4.140).205... [Pg.119]

In asymmetric reactions, chiral phosphine ligands such as BINAP derivatives are used as effective chiral ligands in silver complexes. In particular, an Agr-BINAP complex activates aldehydes and imines effectively and asymmetric allylations,220-222 aldol reactions 223 and Mannich-type reactions224 proceed in high yield with high selectivity (Scheme 51). [Pg.422]

Recently, novel bifunctionalized zinc catalysts have been developed (compounds (N) and (P), Scheme 55). They have both Lewis-acid and Lewis-base centers in their complexes, and show remarkable catalytic activity in direct aldol reactions.233-236 A Zn11 chiral diamine complex effectively catalyzes Mannich-type reactions of acylhydrazones in aqueous media to afford the corresponding adducts in high yields and selectivities (Scheme 56).237 This is the first example of catalytic asymmetric Mannich-type reactions in aqueous media, and it is remarkable that this chiral Zn11 complex is stable in aqueous media. [Pg.423]

Another recent example is the asymmetric Mannich-type reaction of hydroxyketones using a ZnEt2-BINOL complex as a catalyst.429 The complex provided superior enantioselectivity and had a very high turnover number. [Pg.411]

Additions to quinoline derivatives also continued to be reported last year. Chiral dihydroquinoline-2-nitriles 55 were prepared in up to 91% ee via a catalytic, asymmetric Reissert-type reaction promoted by a Lewis acid-Lewis base bifunctional catalyst. The dihydroquinoline-2-nitrile derivatives can be converted to tetrahydroquinoline-2-carboxylates without any loss of enantiomeric purity <00JA6327>. In addition the cyanomethyl group was introduced selectively at the C2-position of quinoline derivatives by reaction of trimethylsilylacetonitrile with quinolinium methiodides in the presence of CsF <00JOC907>. The reaction of quinolylmethyl and l-(quinolyl)ethylacetates with dimethylmalonate anion in the presence of Pd(0) was reported. Products of nucleophilic substitution and elimination and reduction products were obtained . Pyridoquinolines were prepared in one step from quinolines and 6-substituted quinolines under Friedel-Crafts conditions <00JCS(P1)2898>. [Pg.246]

Chapter 1 introduced the nomenclature for chiral systems, the determination of enantiomer composition, and the determination of absolute configuration. This chapter discusses different types of asymmetric reactions with a focus on asymmetric carbon-carbon bond formation. The asymmetric alkylation reaction constitutes an important method for carbon-carbon bond formation. [Pg.71]

Ferraris et al.108 demonstrated an asymmetric Mannich-type reaction using chiral late-transition metal phosphine complexes as the catalyst. As shown in Scheme 3-59, the enantioselective addition of enol silyl ether to a-imino esters proceeds at —80°C, providing the product with moderate yield but very high enantioselectivity (over 99%). [Pg.185]

Kobayashi et al.51 have reported an asymmetric Mannich-type reaction using chiral zirconium catalysts of type 124 (see Section 3.7). This catalyst is also effective for asymmetric aza Diels-Alder reactions. Kobayashi s study showed that the ligand had a profound influence on the yields and enantiose-lectivities of the reaction, and NMI (1-methylimidazole) proved to be the best ligand.51 With an increase in the amount of catalyst, both the chemical yields and enantioselectivities of the product can be enhanced. Scheme 5-39 depicts such aza Diels-Alder reactions, and its table shows that good to excellent enantioselectivity can be obtained for most reactions. [Pg.298]

Camphor sultam derivatives have proved to be effective chiral auxiliaries in many different types of asymmetric reactions. As shown in Scheme 5-44, chiral camphor sulfam can be applied in the synthesis of (—)-pulo upone precursor 151 using an intramolecular Diels-Alder reaction. A Wittig reaction of 148 with 147 connects the chiral auxiliary to the substrate, and subsequent intramolecular Diels-Alder reaction via transition state 150 affords product 151. Compound 151 already has the stereochemistry of (—)-pulo upone 153.72... [Pg.304]

Recent Progress in Asymmetric Wittig-Type Reactions... [Pg.466]

The essence of asymmetric synthesis is producing a new stereogenic center in such a manner that the product consists of stereoisomers in unequal amount. In most cases, this can be achieved by the formation of a new sp3 stereocenter. There is also another type of asymmetric reaction in which the employed substrates contain either a stereogenic unit or a pro-stereogenic unit apart from the functional group, and asymmetric synthesis occurs even though the nature of the reaction is not directly related to the newly formed sp3 stereocenter. The Wittig reaction is invoked for the asymmetric synthesis of such molecules.47... [Pg.466]

Different types of the reagents (see Fig. 8-4) have been applied in asymmetric Wittig-type reactions. Because no new sp3 stereocenter is formed in a Witting-type reaction, a substrate containing a stereogenic or pro-stereogenic unit apart from the carbonyl group is usually required to induce an asymmetric process. [Pg.466]


See other pages where Asymmetric reactions types is mentioned: [Pg.5]    [Pg.5]    [Pg.438]    [Pg.478]    [Pg.213]    [Pg.367]    [Pg.298]    [Pg.70]    [Pg.84]    [Pg.33]    [Pg.21]    [Pg.2]    [Pg.3]    [Pg.7]    [Pg.105]    [Pg.293]    [Pg.306]    [Pg.367]    [Pg.368]    [Pg.395]    [Pg.396]    [Pg.275]    [Pg.351]    [Pg.416]    [Pg.681]    [Pg.159]    [Pg.489]   
See also in sourсe #XX -- [ Pg.407 ]




SEARCH



© 2024 chempedia.info