Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric reactions chiral auxiliary removal

In the above asymmetric aldol reaction, the introduction and the removal of the chiral auxiliary are carried out by simple procedures, and high asymmetric induction is achieved even at ice—bath temperature. However, at least a stoichiometric amount of a chiral auxiliary is required in such a stereo-differentiating reaction (chiral auxiliary is attached to the reactant.). [Pg.294]

In terms of versatility in asymmetric synthesis, chiral auxiliary methodology is often favored over a substrate-controlled process, since the preexisting stereogenicity can be removed (and recovered) subsequent to reaction. This leads, in end effect, to an enantioselective rather than diastereoselective transformation. This section discusses the advances achieved in chiral auxiliary technology for metal-mediated [3 + 2] cycloadditions to electron-deficient olefins68,69. [Pg.847]

Asymmetric Diels-Alder reactions using a dienophile containing a chiral auxiliary were developed more than 20 years ago. Although the auxiliary-based Diels-Alder reaction is still important, it has two drawbacks - additional steps are necessary, first to introduce the chiral auxiliary into the starting material, and then to remove it after the reaction. At least an equimolar amount of the chiral auxiliary is, moreover, necessary. After the discovery that Lewis acids catalyze the Diels-Alder reaction, the introduction of chirality into such catalysts has been investigated. The Diels-Alder reaction utilizing a chiral Lewis acid is truly a practical synthetic transformation, not only because the products obtained are synthetically useful, but also because a catalytic amount of the chiral component can, in theory, produce a huge amount of the chiral product. [Pg.4]

Most asymmetric induction processes with Chital auxiliaries involve a stereo-differentiating reaction that affords one diastereomet as the primary product To obtain the desired enantiomer, the Chiral auxiliary must be removed Highly dia-stereoselective reactions between otganocoppet reagents and allylic substrates with... [Pg.262]

Scheme 5 details the asymmetric synthesis of dimethylhydrazone 14. The synthesis of this fragment commences with an Evans asymmetric aldol condensation between the boron enolate derived from 21 and trans-2-pentenal (20). Syn aldol adduct 29 is obtained in diastereomerically pure form through a process which defines both the relative and absolute stereochemistry of the newly generated stereogenic centers at carbons 29 and 30 (92 % yield). After reductive removal of the chiral auxiliary, selective silylation of the primary alcohol furnishes 30 in 71 % overall yield. The method employed to achieve the reduction of the C-28 carbonyl is interesting and worthy of comment. The reaction between tri-n-butylbor-... [Pg.492]

Clearly it is advantageous to be able to use achiral starting materials and a chiral reagent to induce an asymmetric reaction, thus obviating the need to attach and remove a chiral auxiliary and permitting the recovery and reuse of the chiral reagent. [Pg.20]

The latter work is a rare example in which a high stereoselectivity was reported for a substrate-controlled Ugi synthesis. In asymmetric Ugi reactions carried out with removable chiral auxiliaries, however, high diastei eoselections were achieved (see Section 1.4.4.3.1.). [Pg.801]

An excellent synthetic method for asymmetric C—C-bond formation which gives consistently high enantioselectivity has been developed using azaenolates based on chiral hydrazones. (S)-or (/ )-2-(methoxymethyl)-1 -pyrrolidinamine (SAMP or RAMP) are chiral hydrazines, easily prepared from proline, which on reaction with various aldehydes and ketones yield optically active hydrazones. After the asymmetric 1,4-addition to a Michael acceptor, the chiral auxiliary is removed by ozonolysis to restore the ketone or aldehyde functionality. The enolates are normally prepared by deprotonation with lithium diisopropylamide. [Pg.975]

Certain examples are known for asymmetric induction in domino reactions using either chiral substrates or educts with removable chiral auxiliaries. In contrast, only a few enantioselective domino reactions have been developed so far. The first example was described by us using a titanium complex of glucose diacetonide with 88% ee.[101 Quite... [Pg.41]

The chiral auxiliaries anchored to the substrate, which is subjected to diastereoselective catalysis, is another factor that can control these reactions. These chiral auxiliaries should be easily removed after reduction without damaging the hydrogenated substrate. A representative example in this sense is given by Gallezot and coworkers [268], They used (-)mentoxyacetic acid and various (S)-proline derivates as chiral auxiliaries for the reduction of o-cresol and o-toluic acid on Rh/C. A successful use of proline derivates in asymmetric catalysis has also been reported by Harada and coworkers [269,270], The nature of the solvent only has a slight influence on the d.e. [271],... [Pg.521]

Brimble and coworkers176 studied the asymmetric Diels-Alder reactions of cyclopentadiene with chiral naphthoquinones 272 bearing different chiral auxiliaries. The highest endo and facial selectivities were obtained using zinc dichloride as the Lewis acid catalyst and (—)-pantolactone as the chiral auxiliary. Thus, the reaction between cyclopentadiene and 272 afforded a 98 2 mixture of 273 and 274 (equation 76). The chiral auxiliary was removed easily by lithium borohydride reduction. [Pg.393]

Chiral benzamides I and the pyrrolobenzodiazepine-5,11-dio-nes n have proven to be effective substrates for asymmetric organic synthesis. Although the scale of reaction in our studies has rarely exceeded the 50 to 60 g range, there is no reason to believe that considerably larger-scale synthesis will be impractical. Applications of the method to more complex aromatic substrates and to the potentially important domain of polymer supported synthesis are currently under study. We also are developing complementary processes that do not depend on a removable chiral auxiliary but rather utilize stereogenic centers from the chiral pool as integral stereodirectors within the substrate for Birch reduction-alkylation. [Pg.9]

Control of the diastereoselectivity in the singlet oxygen ene reaction can be achieved by the use of chiral auxiliaries. Success in this field would open up promising prospects in the preparation of optically active building blocks for asymmetric synthesis, since the oxygenation reaction could be followed by the removal of the chiral auxiliary. Unfortunately,... [Pg.868]

Seebach and Naef1961 generated chiral enolates with asymmetric induction from a-heterosubstituted carboxylic acids. Reactions of these enolates with alkyl halides were found to be highly diastereoselective. Thus, the overall enantioselective a-alkyla-tion of chiral, non-racemic a-heterosubstituted carboxylic acids was realized. No external chiral auxiliary was necessary in order to produce the a-alkylated target molecules. Thus, (S)-proline was refluxed in a pentane solution of pivalaldehyde in the presence of an acid catalyst, with azeotropic removal of water. (197) was isolated as a single diastereomer by distillation. The enolate generated from (197) was allylated and produced (198) with ad.s. value >98 %. The substitution (197) ->(198) probably takes place with retention of configuration 196>. [Pg.220]

In the second category, a functional site adjacent to that at which an asymmetric reaction is to be effected is reacted with an optically pure reagent (the chiral auxiliary or chiral adjuvant) to give an optically pure modified reactant. In the subsequent reaction to form the new chiral site, two diastereoisomers would be formed in unequal proportions (the reaction is then said to be diastereo-selective). When the chiral auxiliary is then subsequently removed, one of the enantiomers would be present in a greater proportion [e.g. (c), where the optically pure auxiliary reacts with the carboxyl group, and the subsequent reaction is controlled by the chirality of the auxiliary]. A further point to note is that frequently the mixture of diastereoisomers may be separated readily by one of the latest chromatographic techniques (Section 2.31), in which case removal of the auxiliary leads to the isolation of the pure enantiomers. [Pg.15]

A recent screening of various chiral carboxylic acids has allowed the selection of galacturonic derivative 12 as a very efficient control in the stereochemical course of some Passerini reactions (Scheme 1.5). Although the de seems to be strongly dependent on the isocyanide employed, this result suggests the possibility of employing carboxylic acids as easily removable chiral auxiliaries in the asymmetric synthesis of biologically important mandelamides [16]. [Pg.4]

Using a chiral auxiliary. The achiral substrate is combined with a pure enantiomer known as a chiral auxiliary to form a chiral intermediate. Treatment of this intermediate with a suitable reagent produces the new asymmetric centre. The chiral auxiliary causes, by steric or other means (see section 10.2.2), the reaction to favour the production of one of the possible stereoisomers in preference to the others. Completion of the reaction is followed by removal of the chiral auxiliary, which may be recovered and recycled, thereby cutting down development costs (Figure 10.10). An advantage of this approach is that where the reaction used to produce the new asymmetric centre has a poor stereoselectivity the two products of the reaction will be diastereoisomers, as they contain two different asymmetric centres. These diastereoisomers may be separated by crystallization or chromatography (see section 10.2.1) and the unwanted isomer discarded. [Pg.212]

The thermal asymmetric hDA (AHDA) reaction between 2,4-diaryl-l-thiabuta-l,3-dienes and di-(—)-menthyl fumarate proceeds in excellent yield to afford a mixture of four diastereomers with only moderate Jt-facial diastereo-selectivity (Equation 126). The reaction is accelerated by Lewis acids without influencing the endo selectivity, although overall yields are lower. Chromatographic separation of the cis and trans adducts followed by recrystallization enabled the diastereomers to be obtained in a stereochemically pure state. Removal of the chiral auxiliary by reaction with LiAlH4 from both cis adducts gave the enantiomers of various 2,3-bis(hydroxymethyl)-3,4-dihydro-277-thiopyr-ans and desulfurization provides a route to optically pure diols < 1996J(P1) 1897 >. [Pg.871]


See other pages where Asymmetric reactions chiral auxiliary removal is mentioned: [Pg.76]    [Pg.1065]    [Pg.20]    [Pg.278]    [Pg.265]    [Pg.206]    [Pg.268]    [Pg.175]    [Pg.127]    [Pg.6]    [Pg.11]    [Pg.14]    [Pg.28]    [Pg.127]    [Pg.290]    [Pg.238]    [Pg.243]    [Pg.246]    [Pg.260]    [Pg.477]    [Pg.71]    [Pg.843]    [Pg.200]    [Pg.750]    [Pg.4]    [Pg.8]    [Pg.167]    [Pg.74]    [Pg.7]   
See also in sourсe #XX -- [ Pg.550 ]




SEARCH



Asymmetric chirality

Asymmetric reactions chiral auxiliaries

Chiral auxiliaries reaction

Chirality auxiliaries

Reaction auxiliaries

Reactions chiral

© 2024 chempedia.info