Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric nitroalkanes

Catalytic enantioselective nucleophilic addition of nitroalkanes to electron-deficient alke-nes is a challenging area in organic synthesis. The use of cinchona alkaloids as chiral catalysts has been studied for many years. Asymmetric induction in the Michael addition of nitroalkanes to enones has been carried out with various chiral bases. Wynberg and coworkers have used various alkaloids and their derivatives, but the enantiomeric excess (ee) is generally low (up to 20%).199 The Michael addition of methyl vinyl ketone to 2-nitrocycloalkanes catalyzed by the cinchona alkaloid cinchonine affords adducts in high yields in up to 60% ee (Eq. 4.137).200... [Pg.118]

Yamaguchi and coworkers have found that proline rubidium salts catalyze the asymmetric Michael addition of nitroalkanes to prochiral acceptors. When (25)-L-prolines are used, acyclic ( )-enones give (S)-adducts. Cyclic (Z)-enones give (R)-adducts predominantly (Eq. 4.139).203 Recently, Hanessianhas reported that L-proline (3 7% mol equiv) and 2,5-dimethylpiperazine are more effective to induce catalytic asymmetric conjugate addition of nitroalkanes to cycloal-kanones.204... [Pg.118]

Asymmetric synthesis of tricyclic nitro ergoline synthon (up to 70% ee) is accomplished by intramolecular cyclization of nitro compound Pd(0)-catalyzed complexes with classical C2 symmetry diphosphanes.94 Palladium complexes of 4,5-dihydrooxazoles are better chiral ligands to promote asymmetric allylic alkylation than classical catalysts. For example, allylic substitution with nitromethane gives enantioselectivity exceeding 99% ee (Eq. 5.62).95 Phosphi-noxazolines can induce very high enatioselectivity in other transition metal-catalyzed reactions.96 Diastereo- and enantioselective allylation of substituted nitroalkanes has also been reported.9513... [Pg.146]

The C2-symmetric bifunctional tridentate bis(thiazoline) 222 has been shown to promote the zinc(II)-catalyzed asymmetric Michael addition of nitroalkanes to nitroalkenes in high enantioselectivity <06JA7418>. The corresponding bis(oxazoline) ligand provides comparable enantioselectivity but higher product yield. The same bis(thiazoline) ligand has also been evaluated in the enantioselective Friedel-Crafts alkylation of indoles, but the enantioselectivity is moderate <06OL2115>. [Pg.261]

The a-arylation of carbonyl compounds (sometimes in enantioselective version) such as ketones,107-115 amides,114 115 lactones,116 azlactones,117 malonates,118 piperidinones,119,120 cyanoesters,121,122 nitriles,125,124 sul-fones, trimethylsilyl enolates, nitroalkanes, esters, amino acids, or acids has been reported using palladium catalysis. The asymmetric vinylation of ketone enolates has been developed with palladium complexes bearing electron-rich chiral monodentate ligands.155... [Pg.314]

P. Bako, A. Szolloy, P. Bombicz, L. Toke, Asymmetric C-C Bond Forming Reactions by Chiral Crown Catalysts Darzens Condensation and Nitroalkane Addition to the Double Bond , Synlett 1997, 291-292. [Pg.142]

Correspondingly, the catalytic 1,4-addition of dialkylzinc reagents to 3-nitro-coumarin 89 (Scheme 7.24), with a fixed trans orientation of the aryl and nitro groups, proceeds with excellent yields (90-99%), high diastereoselectivity (d.r. up to 20 1), and enantioselectivities of up to 92%. Hydrolysis of the lactone moiety in 90 was accompanied by decarboxylation, providing an asymmetric synthesis of 8-aryl-nitroalkane 91. [Pg.251]

The degradation may be attributed to weaker interactions between the guanidine and malonate, as nitroalkanes are well known to form tightly bound ion pairs in non-polar solvents [119, 120], The asymmetric induction may have been better for the nitroalkanes because of the tight coordination. [Pg.189]

Scheme 6.54 Chiral nitroalkanes provided from the 54-catalyzed asymmetric transfer hydrogenation of nitroalkenes in the presence of 55. Scheme 6.54 Chiral nitroalkanes provided from the 54-catalyzed asymmetric transfer hydrogenation of nitroalkenes in the presence of 55.
Scheme 6.166 Product range of the asymmetric Henry (nitroaldol) reaction of aldehydes with various nitroalkanes in the presence of (S,S)-configured catalyst 183. Scheme 6.166 Product range of the asymmetric Henry (nitroaldol) reaction of aldehydes with various nitroalkanes in the presence of (S,S)-configured catalyst 183.
The Cu(I)-catalysed asymmetric conjugate addition of dialkyl zinc reagents to 3-nitrocoumarins 45 gives high yields of 3,4-dihydrocoumarins in a pH-dependent diastereoisomeric ratio. Subsequent decarboxylation gives optically active p-aryl nitroalkanes... [Pg.327]

In 1992, Trost and his co-workers investigated desymmetrization of cyclic w j-o-diesters with lithium sulfonyl-methylenenitronate as a nucleophile in the presence of Trost s ligand 118, where the corresponding cyclic compounds are obtained with an excellent enantioselectivity via intramolecular cyclization (Scheme 15),103,103a Asymmetric cyclopropanation and lactone annulation are achieved according to this protocol (Scheme Nitroalkanes can also be employed as carbon-centered nucleophiles in lieu of malonates (Scheme 17). ... [Pg.92]

N—O Stretching Vibrations Nitro Compounds In the nitroalkanes, the bands occur near 1550 and 1372 cm-1. Conjugation lowers the frequency of both bands, resulting in absorption near 1550-1500 and 1360-1290 cm-1. Attachment of electronegative groups to the a carbon of a nitro compound causes an increase in the frequency of the asymmetrical N02 band and a reduction in the frequency of the symmetrical band chloropicrin, C13CN02, absorbs at 1610 and 1307 cm-1. [Pg.105]

Use of proline as a catalyst has become an important methodology in the catalytic asymmetric addition of stabilized carbanions to conjugated carbonyl compounds. Hannessian employed L-proline (S)-l in the addition of nitroalkanes to enones (Scheme 1) [5]. In the presence of 3-7 mol % of (S)-l and an excess of trans-2,5-dimethylpiperazine in chloroform, comparable or higher enantiose-lectivities were attained compared to the Yamaguchi s method using L-proline... [Pg.151]

Shibasaki et al. have reported an asymmetric nitroaldol reaction catalyzed by chiral lanthanum alkoxide 18 to produce an optically active 2-hydroxy-1-nitroalkane with moderate-to-high enantiomeric excesses (Scheme 8B1.10) [27]. Apparently this novel catalyst acts as Lewis base. The proposed reaction mechanism is shown in Scheme 8B1.11, where the first step of the reaction is the ligand exchange between binaphthol and nitromethane. This reaction is probably the first successful example of the catalytic asymmetric reaction promoted by a Lew i s base metal catalyst. Future application of this methodology is quite promising. [Pg.502]

Chiral crown ether phosphine-palladium complexes have been used to catalyse the alkylation of carbanions derived from a-nitro ketones and a-nitro esters,63 and proline rubidium salts have been used to catalyse asymmetric Michael addition of nitroalkanes to prochiral acceptors 64 80% enantioselectivity can be achieved in each case. [Pg.339]

A rubidium salt of proline (5-10 mol%) has been reported to catalyse the asymmetric Michael addition of nitroalkanes to prochiral acceptors. When L-proline was used, acyclic (I )-enones produced (.S )-adducts. whereas cyclic (Z)-enones gave (R )-adducts.88... [Pg.413]

Table 5.10 Asymmetric conjugate addition of nitroalkanes to alkylidenemalonates under phase-transfer conditions. Table 5.10 Asymmetric conjugate addition of nitroalkanes to alkylidenemalonates under phase-transfer conditions.
As an extension of this research, Maruoka and coworkers succeeded in the catalytic asymmetric conjugate addition of nitroalkanes to cyclic a,[S-unsaturated ketones under phase-transfer conditions (Scheme 5.40) [39]. Here, the use of 3,5-bis(3,4,5-trifluorophenyl)phenyl-substituted catalyst (S,S)-lj is crucial for obtaining the high enantioselectivity. [Pg.102]

Pyrrolidin-2-yltetrazole has been found to be a versatile organocatalyst for the asymmetric conjugate addition of nitroalkanes to enones.45 Using this catalyst, this transformation requires short reaction times, tolerates a broad substrate scope, and possibly proceeds via generation of an iminium species. [Pg.284]

The asymmetric catalytic nitroaldol reaction, also known as the asymmetric Henry reaction, is another example of an aldol-related synthesis of high general interest. In this reaction nitromethane (or a related nitroalkane) reacts in the presence of a chiral catalyst with an aldehyde, forming optically active / -nitro alcohols [122], The / -nitro alcohols are valuable intermediates in the synthesis of a broad variety of chiral building blocks, e.g. / -amino alcohols. A highly efficient asymmetric catalytic nitroaldol reaction has been developed by the Shibasaki group, who used multifunctional lanthanoid-based complexes as chiral catalysts [122-125],... [Pg.176]

In summary, several reports have shown that asymmetric modified aldol reactions using y-dienolates, nitroalkanes, or nitrones as donors can (in principal) be performed by use of organocatalysts. Often, however, enantioselectivity is moderate only, and must still be improved. Because these organocatalytic reactions give important intermediates, e.g. for synthesis of pharmaceuticals, it can be expected that this field of modified aldol reactions with organocatalysts will gain further synthetic importance in the future. [Pg.179]

Michael-aldol reaction as an alternative to the Morita-Baylis-Hillman reaction 14 recent results in conjugate addition of nitroalkanes to electron-poor alkenes 15 asymmetric cyclopropanation of chiral (l-phosphoryl)vinyl sulfoxides 16 synthetic methodology using tertiary phosphines as nucleophilic catalysts in combination with allenoates or 2-alkynoates 17 recent advances in the transition metal-catalysed asymmetric hydrosilylation of ketones, imines, and electrophilic C=C bonds 18 Michael additions catalysed by transition metals and lanthanide species 19 recent progress in asymmetric organocatalysis, including the aldol reaction, Mannich reaction, Michael addition, cycloadditions, allylation, epoxidation, and phase-transfer catalysis 20 and nucleophilic phosphine organocatalysis.21... [Pg.288]

The first examples of catalytic asymmetric conjugate addition of alkylzinc reagents to trisubstituted nitroalkenes, such as PhC(Me)=CHN02, leading to the formation of nitroalkanes bearing a quaternary carbon stereogenic centre, have been reported. Reactions are promoted by the readily available amino acid-based phosphine (211)... [Pg.338]

Significant levels of syn diastereoselectivities (5 1 to 16 1) were observed for all substrates, with the exception of an ortho-chloro-substituted aryl imine, which provided only 2 1 syn selectivity. The catalyst was viable for a variety of nitroalkanes, and afforded adducts in uniformly high enantioselectivities (92-95% ee). The sense of enantiofacial selectivity in this reaction is identical to that reported for the thiourea-catalyzed Strecker (see Scheme 6.8) and Mannich (see Tables 6.18 and 6.22) reactions, suggesting a commonality in the mode of substrate activation. The asymmetric catalysis is likely to involve hydrogen bonding between the catalyst and the imine or the nitronate, or even dual activation of both substrates. The specific role of the 4 A MS powder in providing more reproducible results remains unclear, as the use of either 3 A or 5 A MS powder was reported to have a detrimental effect on both enantioselectivities and rates of reaction. [Pg.222]


See other pages where Asymmetric nitroalkanes is mentioned: [Pg.1019]    [Pg.31]    [Pg.234]    [Pg.108]    [Pg.324]    [Pg.386]    [Pg.181]    [Pg.188]    [Pg.67]    [Pg.202]    [Pg.265]    [Pg.315]    [Pg.38]    [Pg.25]    [Pg.11]    [Pg.368]    [Pg.140]    [Pg.219]    [Pg.109]    [Pg.220]    [Pg.214]   
See also in sourсe #XX -- [ Pg.455 , Pg.457 ]




SEARCH



4-nitroalkanal nitroalkane

Nitroalkane

Nitroalkanes

© 2024 chempedia.info