Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkene asymmetric dihydroxylation

Catalytic asymmetric dihydroxylation of alkenes with participation of insoluble polymer-bound cinchonine alkaloids 99SLI181. [Pg.219]

Another important reaction associated with the name of Sharpless is the so-called Sharpless dihydroxylation i.e. the asymmetric dihydroxylation of alkenes upon treatment with osmium tetroxide in the presence of a cinchona alkaloid, such as dihydroquinine, dihydroquinidine or derivatives thereof, as the chiral ligand. This reaction is of wide applicability for the enantioselective dihydroxylation of alkenes, since it does not require additional functional groups in the substrate molecule ... [Pg.256]

When asymmetric epoxidation of a diene is not feasible, an indirect route based on asymmetric dihydroxylation can be employed. The alkene is converted into the corresponding syn-diol with high enantioselectivity, and the diol is subsequently transformed into the corresponding trans-epoxide in a high-yielding one-pot procedure (Scheme 9.5) [20]. No cpirricrizalion occurs, and the procedure has successfully been applied to natural product syntheses when direct epoxidation strategies have failed [21]. Alternative methods for conversion of vicinal diols into epoxides have also been reported [22, 23]. [Pg.319]

Mehrmann SJ, Abdel-MagidAF, Maryanoff CA, Medaer BP (2004) Non-Salen Metal-Catalyzed Asymmetric Dihydroxylation and Asymmetric Aminohydroxylation of Alkenes. Practical Applications and Recent Advances. 6 153-180 De Meijere, see Wu YT (2004) 13 21-58 Manage S, see Fontecave M (2005) 15 271-288... [Pg.292]

Dihydroxylation and asymmetric dihydroxylation of electronically deficient conjugate alkenes have been developed in aqueous media. These reactions were discussed in Chapter 3. [Pg.317]

The history of asymmetric dihydroxylation51 dates back 1912 when Hoffmann showed, for the first time, that osmium tetroxide could be used catalytically in the presence of a secondary oxygen donor such as sodium or potassium chlorate for the cA-dihydroxylation of olefins.52 About 30 years later, Criegee et al.53 discovered a dramatic rate enhancement in the osmylation of alkene induced by tertiary amines, and this finding paved the way for asymmetric dihydroxylation of olefins. [Pg.221]

Since Sharpless discovery of asymmetric dihydroxylation reactions of al-kenes mediated by osmium tetroxide-cinchona alkaloid complexes, continuous efforts have been made to improve the reaction. It has been accepted that the tighter binding of the ligand with osmium tetroxide will result in better stability for the complex and improved ee in the products, and a number of chiral auxiliaries have been examined in this effort. Table 4 11 (below) lists the chiral auxiliaries thus far used in asymmetric dihydroxylation of alkenes. In most cases, diamine auxiliaries provide moderate to good results (up to 90% ee). [Pg.223]

Also fifteen years of painstaking work and the gradual improvement of the system, the Sharpless team announced that asymmetric dihydroxylation (AD) of nearly every type of alkene can be accomplished using osmium tetraoxide, a co-oxidant such as potassium ferricyanide, the crucial chiral ligand based on a dihydroquinidine (DHQD) (21) or dihydroquinine (DHQ) (22) and metha-nesulfonamide to increase the rate of hydrolysis of intermediate osmate esters 1811. [Pg.20]

These cinchona esters also effect asymmetric dihydroxylation of alkenes in reactions with an amine N-oxide as the stoichiometric oxidant and 0s04 as the catalyst. Reactions catalyzed by 1 direct attack to the re-face and those catalyzed by 2 direct attack with almost equal preference for the 5i-face. [Pg.238]

A more versatile method to use organic polymers in enantioselective catalysis is to employ these as catalytic supports for chiral ligands. This approach has been primarily applied in reactions as asymmetric hydrogenation of prochiral alkenes, asymmetric reduction of ketone and 1,2-additions to carbonyl groups. Later work has included additional studies dealing with Lewis acid-catalyzed Diels-Alder reactions, asymmetric epoxidation, and asymmetric dihydroxylation reactions. Enantioselective catalysis using polymer-supported catalysts is covered rather recently in a review by Bergbreiter [257],... [Pg.519]

Table 4. Calculated and experimental enantioselectivities in the asymmetric dihydroxylation with different alkenes and bases (adapted from Ref. 28). Table 4. Calculated and experimental enantioselectivities in the asymmetric dihydroxylation with different alkenes and bases (adapted from Ref. 28).
Polymer-supported [e.g. 8, 9] and silica-supported [10] cinchona alkaloids have been used in the asymmetric dihydroxylation of alkenes using osmium tetroxide. Enantiomeric excesses >90% have been achieved for diols derived from styrene derivatives. [Pg.535]

About a decade after the discovery of the asymmetric epoxidation described in Chapter 14.2, another exciting discovery was reported from the laboratories of Sharpless, namely the asymmetric dihydroxylation of alkenes using osmium tetroxide. Osmium tetroxide in water by itself will slowly convert alkenes into 1,2-diols, but as discovered by Criegee [15] and pointed out by Sharpless, an amine ligand accelerates the reaction (Ligand-Accelerated Catalysis [16]), and if the amine is chiral an enantioselectivity may be brought about. [Pg.308]

Sharpless stoichiometric asymmetric dihydroxylation of alkenes (AD) was converted into a catalytic reaction several years later when it was combined with the procedure of Upjohn involving reoxidation of the metal catalyst with the use of N-oxides [24] (N-methylmorpholine N-oxide). Reported turnover numbers were in the order of 200 (but can be raised to 50,000) and the e.e. for /rara-stilbene exceeded 95% (after isolation 88%). When dihydriquinidine (vide infra) was used the opposite enantiomer was obtained, again showing that quinine and quinidine react like a pair of enantiomers, rather than diastereomers. [Pg.312]

Asymmetric dihydroxylation of alkenes using osmium tetroxide... [Pg.283]

After the "asymmetric epoxidation" of allylic alcohols at the very beginning of the 80 s, at the end of the same decade (1988) Sharpless again surprised the chemical community with a new procedure for the "asymmetric dihydroxylation" of alkenes [30]. The procedure involves the dihydroxylation of simple alkenes with N-methylmorpholine A -oxide and catalytic amounts of osmium tetroxide in acetone-water as solvent at 0 to 4 °C, in the presence of either dihydroquinine or dihydroquinidine p-chlorobenzoate (DHQ-pClBz or DHQD-pClBz) as the chiral ligands (Scheme 10.3). [Pg.284]

The work by E.J. Corey [37], M. Hirama [38] and K. Tomioka [39], and their associates, on asymmetric dihydroxylation of alkenes with chiral diamine-osmium tetroxide complexes also deserves to be mentioned. [Pg.289]

Scheme 4.13 Solid-phase attached catalysts for the asymmetric dihydroxylation of alkenes. Scheme 4.13 Solid-phase attached catalysts for the asymmetric dihydroxylation of alkenes.
Other functionalized supports that are able to serve in the asymmetric dihydroxylation of alkenes were reported by the groups of Sharpless (catalyst 25) [88], Sal-vadori (catalyst 26) [89-91] and Cmdden (catalyst 27) (Scheme 4.13) [92]. Commonly, the oxidations were carried out using K3Fe(CN)g as secondary oxidant in acetone/water or tert-butyl alcohol/water as solvents. For reasons of comparison, the dihydroxylation of trons-stilbene is depicted in Scheme 4.13. The polymeric catalysts could be reused but had to be regenerated after each experiment by treatment with small amounts of osmium tetroxide. A systematic study on the role of the polymeric support and the influence of the alkoxy or aryloxy group in the C-9 position of the immobilized cinchona alkaloids was conducted by Salvadori and coworkers [89-91]. Co-polymerization of a dihydroquinidine phthalazine derivative with hydroxyethylmethacrylate and ethylene glycol dimethacrylate afforded a functionalized polymer (26) with better swelling properties in polar solvents and hence improved performance in the dihydroxylation process [90]. [Pg.218]

The Sbarpless asymmetric dihydroxylation of alkenes usually employs a stoichiometric amount of iodine or potassium ferricyanide to re-oxidisc the osmium centred intermediates in the catalytic cycle [73]. Either reagent can also be used in catalytic amounts and re-oxidised electrochemically at an anode [74, 75]. [Pg.50]

More recently, in light of the development of the Sharpless asymmetric dihydroxylation protocol [20], we have approached the synthesis of diols such as 14 (Scheme 2) from the alkene. Thus, treatment of the alkenyl D-glucosides 15 vmder the conditions of the Sharpless dihydroxylation gave a range of diols 16 with varying diastereoisomeric excesses (Table 1). One of these mixtures of diols, upon recrystallization, yielded the pure diastereoisomer, namely the diol 14. This procedure now gives a very rapid and efficient entry into one of the precursor diols for the synthesis of the optically-pure epoxides [21]. [Pg.194]

It was of obvious interest to prepare the inhibitors 60 as their pure dia-stereoisomers, 66 and 67. Following on from our successful treatment of alkenyl D-glucosides under Sharpless asymmetric dihydroxylation conditions [21], we treated the alkenes 64 with the a-AD - and AD -mLxes - the results are summarized in Table 2. In no case did we ever obtain a satisfactory diastereo-isomeric excess of the diol 68 over the diol 69, or vice versa. A similar lack of stereoselectivity was also obtained with the triol 70 and the amine 71 [48]. [Pg.201]


See other pages where Alkene asymmetric dihydroxylation is mentioned: [Pg.1051]    [Pg.223]    [Pg.232]    [Pg.501]    [Pg.284]    [Pg.146]    [Pg.735]    [Pg.739]    [Pg.740]    [Pg.34]    [Pg.50]    [Pg.567]    [Pg.571]    [Pg.567]    [Pg.571]    [Pg.469]    [Pg.220]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Alkene substrates, asymmetric dihydroxylation

Alkenes Sharpless asymmetric dihydroxylation

Alkenes asymmetric

Alkenes asymmetric dihydroxylations, osmium tetroxide

Alkenes dihydroxylation

Alkenes dihydroxylations

Asymmetric Alkene Dihydroxylations

Asymmetric Alkene Dihydroxylations

Asymmetric dihydroxylation

Asymmetric synthesis alkene dihydroxylation

Asymmetrical alkene

Asymmetrical dihydroxylation

Catalysis asymmetric alkene dihydroxylation

Cinchona alkenes, asymmetric dihydroxylation

Group 8 metal-promoted oxidations alkene cleavage and asymmetric dihydroxylation

Oxidation asymmetric alkene dihydroxylation

© 2024 chempedia.info