Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl halides intermolecular

Examples of the intermolecular C-P bond formation by means of radical phosphonation and phosphination have been achieved by reaction of aryl halides with trialkyl phosphites and chlorodiphenylphosphine, respectively, in the presence of (TMSlsSiH under standard radical conditions. The phosphonation reaction (Reaction 71) worked well either under UV irradiation at room temperature or in refluxing toluene. The radical phosphina-tion (Reaction 72) required pyridine in boiling benzene for 20 h. Phosphinated products were handled as phosphine sulfides. Scheme 15 shows the reaction mechanism for the phosphination procedure that involves in situ formation of tetraphenylbiphosphine. This approach has also been extended to the phosphination of alkyl halides and sequential radical cyclization/phosphination reaction. ... [Pg.152]

Aryl halides can be dehalogenated by Friedel-Crafts catalysts. Iodine is the most easily cleaved. Dechlorination is seldom performed and defluorination apparently never. The reaction is most successful when a reducing agent, say, Br or 1 is present to combine with the I" or Br coming off." Except for deiodination, the reaction is seldom used for preparative purposes. Migration of halogen is also found," both intramolecular and intermolecular." The mechanism is probably the reverse of that of 11-11." ... [Pg.735]

Initial Intermolecular Tin-free Animations of Aryl Halides 372... [Pg.369]

The intermolecular coupling of lactams and acyclic amides has also been reported. Reactions of carbamates with aryl halides occurred in the presence of catalysts ligated by P(/-Bu)3.78 Both carbamates and amides coupled with aryl halides in the presence of a catalyst bearing Xantphos.90 In addition, the coupling of lactams with aryl halides has been successful. A combination of Pd(OAc)2 and DPPF first formed A-aryl lactams in good yields from 7-lactams, but the arylation of amides was improved significantly by the use of Xantphos (Equations (20) and (21)).90 91 The reaction of aryl halides with vinyligous amides has also been reported 92... [Pg.379]

The first palladium-catalyzed formation of aryl alkyl ethers in an intermolecular fashion occurred between activated aryl halides and alkoxides (Equation (28)), and the first formation of vinyl ethers occurred between activated vinyl halides and tin alkoxides (Equation (29)). Reactions of activated chloro- and bromoarenes with NaO-Z-Bu to form /-butyl aryl ethers occurred in the presence of palladium and DPPF as catalyst,107 while reactions of activated aryl halides with alcohols that could undergo /3-hydrogen elimination occurred in the presence of palladium and BINAP as catalyst.110 Reactions of NaO-/-Bu with unactivated aryl halides gave only modest yields of ether when catalyzed by aromatic bisphosphines.110 Similar chemistry occurred in the presence of nickel catalysts. In fact, nickel catalysts produced higher yields of silyl aryl ethers than palladium catalysts.108 The formation of diaryl ethers from activated aryl halides in the presence of palladium catalysts bearing DPPF or a CF3-subsituted DPPF was also reported 109... [Pg.382]

Palladium-catalyzed cyclization reactions with aryl halides have been used to synthesize pyrazole derivatives. V-Aryl-lV-(c>-bromobenzyl)hydrazines 26 participated in a palladium-catalyzed intramolecular amination reaction to give 2-aryl-2W-indazoles 27 . Palladium-catalyzed cascade intermolecular queuing-cyclocondensation reaction of o-iodophenol (28) with dimethylallene and aryl hydrazines provided pyrazolyl chromanones 29 <00TL7129>. A novel one-pot synthesis of 3,5-disubstituted-2-pyrazolines 32 has been achieved with an unexpected coupling-isomerization sequence of haloarene 30, propargyl alcohol 31, and methylhydrazine <00ACIE1253>. [Pg.169]

The Pd-catalyzed intermolecular C—O bond formation has also been achieved [105-108]. Novel electron-rich bulky phosphine ligands utilized by Buchwald et al. greatly facilitated the Pd-catalyzed diaryl ether formation [109], When 2-(di-tert-butylphosphino)biphenyl (95) was used as the ligand, the reaction of triflate 93 and phenol 94 elaborated diaryl ether 96 in the presence of Pd(OAc)2 and K3PO4. The methodology also worked for electron-poor, neutral and electron-rich aryl halides. [Pg.23]

Palladium chemistry of heterocycles has its idiosyncrasies stemming from their different structural properties from the corresponding carbocyclic aryl compounds. Even activated chloroheterocycles are sufficiently reactive to undergo Pd-catalyzed reactions. As a consequence of a and y activation of heteroaryl halides, Pd-catalyzed chemistry may take place regioselectively at the activated positions, a phenomenon rarely seen in carbocyclic aryl halides. In addition, another salient peculiarity in palladium chemistry of heterocycles is the so-called heteroaryl Heck reaction . For instance, while intermolecular palladium-catalyzed arylations of carbocyclic arenes are rare, palladium-catalyzed arylations of azoles and many other heterocycles readily take place. Therefore, the principal aim of this book is to highlight important palladium-mediated reactions of heterocycles with emphasis on the unique characteristics of individual heterocycles. [Pg.416]

Palladium(0)-catalyzed cross-coupling of aryl halides and alkenes (i.e., the Heck reaction) is widely used in organic chemistry. Oxidative Heck reactions can be achieved by forming the Pd -aryl intermediate via direct palladation of an arene C - H bond. Intramolecular reactions of this type were described in Sect. 4.1.2, but considerable effort has also been directed toward the development of intermolecular reactions. Early examples by Fu-jiwara and others used organic peroxides and related oxidants to promote catalytic turnover [182-184]. This section will highlight several recent examples that use BQ or dioxygen as the stoichiometric oxidant. [Pg.103]

Phenols do not undergo intermolecular dehydration. Although aryl halides cannot be used as substrates in typical Williamson syntheses, they do undergo a modified Williamson-type synthesis at higher temperature in the presence of Cu. [Pg.311]

In 1995 Herrmann discovered highly efficient palladacyde catalysts in Heck and related reactions of aryl halides with catalyst turnover numbers (TONs) up to 500,000 [ 117]. Later, TONs of the intermolecular Heck reaction reached up to 8,900,000 [ 118]. On the other hand, few syntheses of chiral palladacyde catalysts were envisioned and most of these attempts failed. Recently, the first AHR using a chiral phosphapalladacycle catalyst was reported by Buono et al. [ 119]. The chiral phosphapalladacycle catalyst 129, which was prepared from Pd(OAc)2... [Pg.77]

Intermolecular Stille reaction of aryl halides with immobilized stannanes (Scheme 6.1.21) provided the coupling products in good yield [45], In addition, the stanny-... [Pg.469]

Initial Intermolecular Tin-Free Aminations of Aryl Halides... [Pg.201]

Intermolecular photoreaction of an aryl halide with another aromatic compound may lead to the formation of biaryls. In this section several examples of such reactions will be discussed. In some cases, information concerning the reaction mechanism is available but the depth to which mechanisms have been investigated varies greatly. In many cases aryl radicals formed by homolysis of the carbon-halogen bond are the reactive species. Such radicals may also be produced via electron transfer, followed by departure of halide anion. In some cases aryl cations have been proposed as intermediates. Intermolecular bond formation may also be preceded by charge transfer within an exciplex or by formation of radical ion pairs. [Pg.917]

In the presence of a catalyst system of [Pd2dba3] and proazaphospha-trane (107) Verkade and Nandakumar [94,95] have achieved a double-amination-intermolecular Heck reaction sequence in a one-pot fashion with 4-amino styrene and various aryl halides to furnish the triarylated products 108 in moderate to excellent yields (Scheme 37). [Pg.172]

This may imply that the intermolecular coupling of various aryl halides with other heteroaromatic compounds may proceed. Indeed, it is now known that not only the special heteroaromatic halides but also usual aryl halides can react with a variety of five-membered aromatic heterocycles, including furans, thiophenes, and azole compounds such as M-substituted imidazoles, oxazoles, and thiazoles [133-137]. The arylation of azoles can be carried out using iodobenzoate immobilized on an insoluble polymer support [138]. Related intermolecular reactions of indole [139] and imidazole [140] derivatives have also been reported. [Pg.232]


See other pages where Aryl halides intermolecular is mentioned: [Pg.886]    [Pg.886]    [Pg.140]    [Pg.251]    [Pg.712]    [Pg.102]    [Pg.382]    [Pg.383]    [Pg.155]    [Pg.655]    [Pg.540]    [Pg.54]    [Pg.77]    [Pg.413]    [Pg.539]    [Pg.149]    [Pg.66]    [Pg.223]    [Pg.75]    [Pg.198]    [Pg.221]    [Pg.1310]    [Pg.1398]    [Pg.109]    [Pg.54]    [Pg.295]   
See also in sourсe #XX -- [ Pg.917 , Pg.918 , Pg.919 , Pg.920 , Pg.921 , Pg.922 , Pg.923 ]




SEARCH



Arylation intermolecular

Initial Intermolecular Tin-Free Aminations of Aryl Halides

Intermolecular Tin-Free Aminations of Aryl Halides

© 2024 chempedia.info