Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl halides heterocyclics

The cross-coupling of aromatic and heteroaromatic rings has been carried out extensively[555]. Tin compounds of heterocycles such as oxazo-lines[556,557], thiophene[558,559], furans[558], pyridines[558], and seleno-phenes [560] can be coupled with aryl halides. The syntheses of the phenylo.xazoline 691[552], dithiophenopyridine 692[56l] and 3-(2-pyridyl)qui-noline 693[562] are typical examples. [Pg.229]

Harrwig and Bnchwidd have developed a new methodology for aryladon of amines or phenols with aryl halides and palladium catiilysts This reacdon provides a very useful strategy for the preparadon of various heterocyclic compounds such as phenazines, as shown in Scheme... [Pg.306]

A wide variety of heterocycles can be readily prepared by the heteroannulation of alkynes. For example, the palladium-catalyzed annulation of internal alkynes by 2-iodoanilines provides easy access to 2,3-disubstituted indoles by a process that involves initial reduction of Pd(OAc)2 to Pd(0), oxidative addition of the aryl halide to Pd(0), c/s-addition of the arylpalladium... [Pg.435]

In addition, complexes of P(/-Bu)3 have been shown to catalyze the formation of diaryl heteroarylamines from bromothiophenes.224 Aminations of five-membered heterocyclic halides such as furans and thiophenes are limited because their electron-rich character makes oxidative addition of the heteroaryl halide and reductive elimination of amine slower than it is for simple aryl halides. Reactions of diarylamines with 3-bromothiophenes occurred in higher yields than did reactions of 2-bromothiophene, but reactions of substituted bromothiophenes occurred in more variable yields. The yields for reactions of these substrates in the presence of catalysts bearing P(/-Bu)3 as ligand were much higher than those in the presence of catalysts ligated by arylphosphines. [Pg.375]

Commensurately with the development of various catalyst systems, the Pd-catalyzed G-O cross-coupling has found a number of synthetic applications. Examples include the syntheses of the protein kinase G (PKC) activator (+)-decursin,104 the natural product heliannuol E,105 a chiral 2-methyl chroman,106 and a series of aryloxy and alkoxy porphyrins.107 The Buchwald-Hartwig coupling has also been utilized in the preparation of a heterocycle library.108 Intramolecular O-arylation has also been achieved in the reactions of enolates with aryl halides leading to benzofur-ans.109,110 Finally, a double cross-coupling between an 0-dibromobenzene and a glycol has also been applied for the preparation of benzodioxanes (Equation (16)).1... [Pg.656]

In 1995, Buchwald and Hartwig independently discovered the direct Pd-catalyzed C—N bond formation of aryl halides with amines in the presence of stoichiometric amount of base [93, 94], This field is becoming rapidly mature and many reviews covering the scope and limitations of this animation have been published since 1995 [95-102]. In the context of heteroaryl synthesis, one example is given to showcase the utility and mechanism of this reaction. Applications to individual heterocycles may be found in their respective chapters. [Pg.21]

Pyridine is a jt-electron-deficient heterocycle. Due to the electronegativity of the nitrogen atom, the a and y positions bear a partial positive charge, making the C(2), C(4), and C(6) positions prone to nucleophilic attacks. A similar trend occurs in the context of palladium chemistry. The a and y positions of halopyridines are more susceptible to the oxidative addition to Pd(0) relative to simple carbocyclic aryl halides. Even a- and y-chloropyridines are viable electrophilic substrates for Pd-catalyzed reactions under standard conditions. [Pg.183]

Palladium chemistry of heterocycles has its idiosyncrasies stemming from their different structural properties from the corresponding carbocyclic aryl compounds. Even activated chloroheterocycles are sufficiently reactive to undergo Pd-catalyzed reactions. As a consequence of a and y activation of heteroaryl halides, Pd-catalyzed chemistry may take place regioselectively at the activated positions, a phenomenon rarely seen in carbocyclic aryl halides. In addition, another salient peculiarity in palladium chemistry of heterocycles is the so-called heteroaryl Heck reaction . For instance, while intermolecular palladium-catalyzed arylations of carbocyclic arenes are rare, palladium-catalyzed arylations of azoles and many other heterocycles readily take place. Therefore, the principal aim of this book is to highlight important palladium-mediated reactions of heterocycles with emphasis on the unique characteristics of individual heterocycles. [Pg.416]

Further, a large number of examples with simple alkyl substituents [168, 171, 176-184], cyclic alkanes [185], aryl substituents [177, 186-192], olefmic substituents [78, 177, 193-196], deuterated compounds [172], thioether groups [171], ester groups [197], orthoesters [198, 199], acetals [168, 182, 200-204], silyl-protected alcohols [198, 205-211], aldehydes [212], different heterocycles [213-217], alkyl halides [218, 219] and aryl halides [192, 220-223] have been reported. A representative example is the reaction of 92, possessing a free hydroxyl group, an acetal and a propargylic ether, to 93 [224] (Scheme 1.40). [Pg.19]

This article presents the principles known so far for the synthesis of metal complexes containing stable carbenes, including the preparation of the relevant carbene precursors. The use of some of these compounds in transition-metal-catalyzed reactions is discussed mainly for ruthenium-catalyzed olefin metathesis and palladium-Znickel-catalyzed coupling reactions of aryl halides, but other reactions will be touched upon as well. Chapters about the properties of metal- carbene complexes, their applications in materials science and medicinal chemistry, and their role in bioinorganic chemistry round the survey off. The focus of this review is on ZV-heterocyclic carbenes, in the following abbreviated as NHC and NHCs, respectively. [Pg.3]

Successful lithiation of aryl halides—carbocyclic or heterocyclic—with alkyUithiums is, however, the exception rather than the rule. The instability of ortholithiated carbocyclic aryl halides towards benzyne formation is always a limiting feature of their use, and aryl bromides and iodides undergo halogen-metal exchange in preference to deprotonation. Lithium amide bases avoid the second of these problems, but work well only with aryl halides benefitting from some additional acidifying feature. Chlorobenzene and bromobenzene can be lithiated with moderate yield and selectivity by LDA or LiTMP at -75 or -100 °C . [Pg.540]

The formation of arylzinc reagents can also be accomplished by using electrochemical methods. With a sacrificial zinc anode and in the presence of nickel 2,2-bipyridyl, polyfunctional zinc reagents of type 36 can be prepared in excellent yields (Scheme 14) . An electrochemical conversion of aryl halides to arylzinc compounds can also be achieved by a cobalt catalysis in DMF/pyridine mixture . The mechanism of this reaction has been carefully studied . This method can also be applied to heterocyclic compounds such as 2- or 3-chloropyridine and 2- or 3-bromothiophenes . Zinc can also be elec-trochemically activated and a mixture of zinc metal and small amounts of zinc formed by electroreduction of zinc halides are very reactive toward a-bromoesters and allylic or benzylic bromides . ... [Pg.295]

Yields versus aryl halides are moderate to good. Other nitrogen heterocycles such as 2-chloro-5-trifluoromethylpyridine or 2-chloropyrimidine were also coupled with p-MeOCgHjZnBr in 33% and 54% yields, respectively. Under the same conditions, no coupling product was observed with 3-chloropyridine. This specific behavior of 2-chloropyridine as compared to aryl halides can be explained by the presence of the nitrogen atom close to the carbon—halogen bond. [Pg.781]

The palladium catalyzed intramolecular coupling of aryl halides and classical carbanions, sometimes considered a variant of the Buchwald-Hartwig coupling, might also be used for the formation of heterocyclic systems. 7V-(2 -bromophenyl)-propionamides were converted in the presence of the appropriate palladium catalyst and lithium hexamethyldisilazide to oxindoles (3.2.). Under the applied conditions a series of electron deficient and electron rich aniline derivatives, including 2-chloroanilines were transformed successfully.2... [Pg.30]


See other pages where Aryl halides heterocyclics is mentioned: [Pg.82]    [Pg.1058]    [Pg.1058]    [Pg.82]    [Pg.1058]    [Pg.1058]    [Pg.213]    [Pg.218]    [Pg.134]    [Pg.2]    [Pg.930]    [Pg.932]    [Pg.172]    [Pg.372]    [Pg.377]    [Pg.382]    [Pg.382]    [Pg.98]    [Pg.228]    [Pg.709]    [Pg.267]    [Pg.228]    [Pg.146]    [Pg.9]    [Pg.69]    [Pg.76]    [Pg.732]    [Pg.11]    [Pg.116]    [Pg.394]    [Pg.364]    [Pg.648]    [Pg.69]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Aryl halides with heterocyclic amines

Arylations heterocycles

Catalyzed Reactions of Aryl Halides with Heterocyclic Amines

Halides, aryl, arylation coupling with heterocycles

Heterocycles arylation

© 2024 chempedia.info