Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl halides carbon-halogen bond

The value of alkyl halides as starting materials for the preparation of a variety of organic functional groups has been stressed many times In our earlier discussions we noted that aryl halides are normally much less reactive than alkyl halides m reactions that involve carbon-halogen bond cleavage In the present chapter you will see that aryl halides can exhibit their own patterns of chemical reactivity and that these reac tions are novel useful and mechanistically interesting... [Pg.971]

The carbon-halogen bonds of aryl halides are both shorter and stronger than the carbon-halogen bonds of alkyl halides In this respect as well as m their chemical behavior they resemble vinyl halides more than alkyl halides A hybridization effect seems to be responsible because as the data m Table 23 1 indicate similar patterns are seen for both carbon-hydrogen bonds and carbon-halogen bonds An increase m s... [Pg.971]

The strength of their carbon-halogen bonds causes aryl halides to react very slowly in reactions in which carbon-halogen bond cleavage is rate determining as m nude ophilic substitution for example Later m this chapter we will see examples of such reactions that do take place at reasonable rates but proceed by mechanisms distinctly dif ferent from the classical S l and 8 2 pathways... [Pg.972]

Aryl halides are compounds of the type Ar—X where X = F Cl Br or I The carbon-halogen bond is stronger m ArX than m an alkyl halide (RX)... [Pg.986]

Both Ni and Pd reactions are proposed to proceed via the general catalytic pathway shown in Scheme 8.1. Following the oxidative addition of a carbon-halogen bond to a coordinatively unsaturated zero valent metal centre (invariably formed in situ), displacement of the halide ligand by alkoxide and subsequent P-hydride elimination affords a Ni(II)/Pd(ll) aryl-hydride complex, which reductively eliminates the dehalogenated product and regenerates M(0)(NHC). ... [Pg.208]

The activated nickel powder is easily prepared by stirring a 1 2.3 mixture of NiL and lithium metal under argon with a catalytic amount of naphthalene (1(7 mole % based on nickel halide) at room temperature for 12 h in DME. The resulting black slurry slowly settles after stirring is stopped and the solvent can be removed via cannula if desired. Washing with fresh DME will remove the naphthalene as well as most of the lithium salts. For most of the nickel chemistry described below, these substances did not affect the reactions and hence they were not removed. The activated nickel slurries were found to undergo oxidative addition with a wide variety of aryl, vinyl, and many alkyl carbon halogen bonds. [Pg.231]

Aryl halides a halogen atom is bonded to an. sp2-hybridized aromatic carbon. [Pg.222]

Intramolecular dissociative electron transfer in aryl halide radical-anions involves an interaction between the n-aroinatic orbital and the o-type carbon-halogen bond. These orbitals are orthogonal, but bending of the carbon-halogen bond allows the necessary interaction. Qualitatively, the influence of several factors on the bond cleavage rate can be discerned [18],... [Pg.93]

Yields versus aryl halides are moderate to good. Other nitrogen heterocycles such as 2-chloro-5-trifluoromethylpyridine or 2-chloropyrimidine were also coupled with p-MeOCgHjZnBr in 33% and 54% yields, respectively. Under the same conditions, no coupling product was observed with 3-chloropyridine. This specific behavior of 2-chloropyridine as compared to aryl halides can be explained by the presence of the nitrogen atom close to the carbon—halogen bond. [Pg.781]

There is wide diversity in the nature of organohalogen compounds but, of necessity, we have restricted this chapter to alkyl, cycloalkyl, alkenyl, alkynyl, and aryl halides. Some of the chemistry of the carbon-halogen bonds already will be familiar to you because it involves the addition, substitution, and elimination reactions discussed in previous chapters. To some extent, we will amplify these reactions and consider nucleophilic substitution by what are called the addition-elimination and elimination-addition mechanisms. Subsequently, we will discuss the formation of carbon-metal bonds from carbon-halogen bonds. The latter type of reaction is of special value because compounds that have carbon-metal bonds are potent reagents for the formation of carbon-carbon bonds, as we will show later in this chapter. [Pg.535]

Since a carbon-halogen bond is more easily reduced than a silicon-halogen bond, cathodic reduction of organic halides such as allyl, benzyl, aryl and vinyl halides in the... [Pg.1220]

As to the next step, namely, the reaction of aryl radicals with nucleophiles, we should take into account the fact that air molecular orbital, which initially accommodates the incoming electron, is available in the aryl halide. The electron is subsequently transferred in-tramolecularly from the it to the o molecular orbital of the carbon-halogen bond. Aryl radicals effectively scavenge H atoms. Therefore, an abstraction of a hydrogen atom from the solvent may occur. However, in the case of nucleophiles that can act as effective traps of aryl radicals, the addition of a nucleophile to the phenyl radical takes place. At this point, let us focus on the step of addition of the nucleophile (Y ) to the intermediate radical (Ph). When a new a bond begins to form between the sp3 carbon-centered radical (H5C6) and... [Pg.215]

Of this group only benzyl chloride is not an aryl halide its halogen is not attached to the aromatic ring but to an. v/r -hybridized carbon. Benzyl chloride has the weakest carbon-halogen bond, its measured carbon-chlorine bond dissociation energy being only 293 kJ/mol (70 kcal/mol). Homolytic cleavage of this bond produces a resonance-stabilized benzyl radical. [Pg.656]

Aryl halides are relatively unreactive toward nucleophilic substitution reactions. This lack of reactivity is due to several factors. Steric hindrance caused by the benzene ring of the aryl halide prevents SN2 reactions. Likewise, phenyl cations are unstable, thus making SN1 reactions impossible. In addition, the carbon-halogen bond is shorter and therefore stronger in aryl halides than in alkyl halides. The carbon-halogen bond is shortened in aryl halides for two reasons. First, the carbon atom in aryl halides is sp2 hybridized instead of sp3 hybridized as in alkyl halides. Second, the carbon-halogen bond has partial double bond characteristics because of resonance. [Pg.72]

Aryl halides have been used with moderate success as photoaffinity reagents and they react in a process initiated by homolytic fission at the carbon-halogen bond (Sharma and Kharash, 1968, Grimshaw and de Silva, 1981). [Pg.19]

Carbon-halogen bond cleavage in aryl halides is believed to involve initial excitation into an upper singlet state that is stable with respect to cleavage, followed by intersystem crossing to an upper triplet state that is either dissociative itself or can cross to an upper dissociative (a, a ) triplet [65-67]. The two-color approach has been used to demonstrate directly that excitation to an upper triplet state results in carbon-halogen cleavage. For example, in 2-bromonaphthalene (81) and 9-bromo-phenanthrene (82) [68], promotion of Tj to an upper triplet by dye laser excitation... [Pg.267]

Intermolecular photoreaction of an aryl halide with another aromatic compound may lead to the formation of biaryls. In this section several examples of such reactions will be discussed. In some cases, information concerning the reaction mechanism is available but the depth to which mechanisms have been investigated varies greatly. In many cases aryl radicals formed by homolysis of the carbon-halogen bond are the reactive species. Such radicals may also be produced via electron transfer, followed by departure of halide anion. In some cases aryl cations have been proposed as intermediates. Intermolecular bond formation may also be preceded by charge transfer within an exciplex or by formation of radical ion pairs. [Pg.917]

In intramolecular arylations, a new bond is created between two aromatic moieties of the same molecule or between an aromatic nucleus and an atom of a side-chain. Many intramolecular arylation reactions of homocyclic and heterocyclic aromatic halides have been studied mainly in view of their synthetic applications, and it is not always clear which mechanistic pathway is followed. The reaction may start with homolytic or heterolytic dissociation of the carbon-halogen bond and proceed by attack of the aryl radical or aryl cation on another part of the molecule. Electrocyclization followed by elimination of hydrogen halide is another possibility. Especially when heteroatoms such as nitrogen, sulphur or phosphorus are involved, the initial step may be a nucleophilic attack on the carbon atom bearing the halide atom. [Pg.924]


See other pages where Aryl halides carbon-halogen bond is mentioned: [Pg.975]    [Pg.975]    [Pg.208]    [Pg.147]    [Pg.228]    [Pg.219]    [Pg.41]    [Pg.20]    [Pg.122]    [Pg.137]    [Pg.148]    [Pg.726]    [Pg.83]    [Pg.982]    [Pg.552]    [Pg.554]    [Pg.465]    [Pg.243]    [Pg.244]    [Pg.396]    [Pg.588]    [Pg.934]    [Pg.1024]    [Pg.1052]    [Pg.54]    [Pg.554]    [Pg.21]   
See also in sourсe #XX -- [ Pg.843 ]




SEARCH



5-Aryl-3-halogen

Aryl Bonds

Bonding aryls

Bonds carbon-halogen bond

Carbon halides

Carbon halogenation

Carbon-halogen bonds

Halide bond

Halogen bonding

Halogen bonds/bonding

© 2024 chempedia.info