Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl asymmetric oxidation

Bartoli recently discovered that by switching from azide to p-anisidine as nucleophile, the ARO of racemic trans- 3-substituted styrene oxides could be catalyzed by the (salen)Cr-Cl complex 2 with complete regioselectivity and moderate selectivity factors (Scheme 7.36) [14]. The ability to access anti-P-amino alcohols nicely complements the existing methods for the preparation of syn-aryl isoserines and related compounds [67] by asymmetric oxidation of trans-cinnamate derivatives [68]. [Pg.252]

The modified Sharpless reagent was also successfully applied288 for the asymmetric oxidation of a series of 1,3-dithiolanes 248 to their S-monooxides 249 (equation 134). It was observed that the optical induction on sulphur (e.e. from 68 to 83%) is not significantly affected by the substituents R1 and R2. Asymmetric oxidation of a few aryl methyl sulphides by organic hydroperoxides in the presence of a catalytic amount of the optically active Schiff base-oxovanadium(IV) complexes gave the corresponding sulphoxides with e.e. lower than 40%289. [Pg.291]

Aryl vinyl sulphones, reactions of 646 Aryl vinyl sulphoxides 620 optical resolution of 287 reactions of 354, 355, 360, 361, 621 Asscher-Vofsi reaction 189 Asymmetric induction 625 Asymmetric oxidation 72-78 Asymmetric reduction 78, 79 Asymmetric synthesis 824-846 Atomic orbitals 2, 3 Azetidinones 790, 791 ot-Azidoaldehydes, synthesis of 811 Azidosulphones, photolysis of 883, 884 Azosulphones, photolysis of 879 Azoxysulphones, photolysis of 879 1-Azulyl sulphoxides, synthesis of 265... [Pg.1197]

Catalytic enantioselective crossed aldehyde-ketone benzoin cyclizations of ketoaldehydes, such as 13, readily obtained from an aryl nitrile oxide and a 1,3-diketone, were studied in order to perform the synthesis of complex molecules. Significant asymmetric induction was observed with chiral triazolium salts such as 14, in the presence of DBU as base, leading to compound 15 in high yield and with 99% ee in favor of the R enantiomer <06AG(E)3492>. [Pg.289]

According to this correlation model, in which the principles of steric control of asymmetric induction at carbon (40) are applied, the stereoselectivity of oxidation should depend on the balance between one transition state [Scheme 1(a)] and a more hindered transition state [Scheme 1(6)] in which the groups and R at sulfur face the moderately and least hindered regions of the peroxy acid, respectively. Based on this model and on the known absolute configuration of (+)-percamphoric acid and (+)-l-phenylperpropionic acid, the correct chirality at sulfur (+)-/ and (-)-5 was predicted for alkyl aryl sulfoxides, provided asymmetric oxidation is performed in chloroform or carbon tetrachloride solution. Although the correlation model for asymmetric oxidation of sulfides to sulfoxides is oversimplified and has been questioned by Mislow (41), it may be used in a tentative way for predicting the chirality at sulfur in simple sulfoxides. [Pg.341]

SCHEME 106. Titanium-catalyzed asymmetric oxidation of aryl alkyl sulfides using a chiral tetradentate trialkanolamine ligand... [Pg.481]

In combination with H2O2 (salen)Mn(III) complexes 173a, b, i-n have also been employed by Jacobsen and coworkers as catalysts for the asymmetric oxidation of sulfides to sulfoxides, without a need for additives. From the structurally and electronically different Mn-salen catalysts screened, 173i turned out to be the most active and selective one (equation 58) . While dialkyl sulfides underwenf uncafalyzed oxidation with H2O2, aryl alkyl sulfides were oxidized only slowly compared wifh fhe cafalyzed pathway. Using... [Pg.483]

Very recently, Lattanzi and coworkers reported on the use of enantiomericaUy pure camphor derived hydroperoxide 61 for the Ti(OPr-/)4 catalyzed chemoselective asymmetric oxidation of aryl methyl sulfides (equation 59) . The corresponding sulfoxides could be obtained in moderate yields (39-68%) and ee values up to 51%. The sulfoxidation to the sulfoxides is accompanied by further oxidation of the sulfone (kinetic resolution, yields of sulfone up to 9%). This process is stereodivergent with respect to the sulfoxidation step, which was found for the first time. Although the obtained enantioselectivities for the sulfoxides were only moderate, they proved to be among the best reported at that time with the use of enantiopure hydroperoxides as the only asymmetric inductor. The... [Pg.491]

Chiral sulfoxides (12, 92). Kagan et al.3 have reviewed the asymmetric oxidation of sulfides by a water-modified Sharpless reagent. Optical yields are generally highest in the oxidation of aryl methyl sulfides (—75-90%). [Pg.53]

Table 6C. 1 lists representative results for the asymmetric oxidation of thio ethers with r-butyl hydroperoxide under the standard conditions (in dichloromethane at -20°C). Enantioselectivi-ties are especially good (80-95% ee) for the oxidation of aryl methyl sufoxides (Table 6C.1). A substantial decrease in enantioselectivity is observed for oxidation of aryl-S-alkyl-type sulfides in which an alkyl group is larger than methyl such as n-propyl an n-butyl. Table 6C. 1 lists representative results for the asymmetric oxidation of thio ethers with r-butyl hydroperoxide under the standard conditions (in dichloromethane at -20°C). Enantioselectivi-ties are especially good (80-95% ee) for the oxidation of aryl methyl sufoxides (Table 6C.1). A substantial decrease in enantioselectivity is observed for oxidation of aryl-S-alkyl-type sulfides in which an alkyl group is larger than methyl such as n-propyl an n-butyl.
The Schiff base-oxovanadium(IV) complex formulated as 19 was found to catalyze the asymmetric oxidation of sulfides with cumene hydroperoxide (Scheme 6C.8) [70]. Various aryl methyl sulfides were used for this process (room temperature in dichloromethane and 0,1 mol equiv. of the catalyst). Chemical yields were excellent, but enantioselectivities were not higher than 40% for the resulting methyl phenyl sulfoxide, Complex 16a, where [Ti] was replaced by VO, was also examined in the oxidation of sulfides, but the reactions gave only racemic sulfoxides [68],... [Pg.340]

Chiral (salen)Mn(III)Cl complexes are useful catalysts for the asymmetric epoxidation of isolated bonds. Jacobsen et al. used these catalysts for the asymmetric oxidation of aryl alkyl sulfides with unbuffered 30% hydrogen peroxide in acetonitrile [74]. The catalytic activity of these complexes was high (2-3 mol %), but the maximum enantioselectivity achieved was rather modest (68% ee for methyl o-bromophenyl sulfoxide). The chiral salen ligands used for the catalysts were based on 23 (Scheme 6C.9) bearing substituents at the ortho and meta positions of the phenol moiety. Because the structures of these ligands can easily be modified, substantia] improvements may well be made by changing the steric and electronic properties of the substituents. Katsuki et al. reported that cationic chiral (salen)Mn(III) complexes 24 and 25 were excellent catalysts (1 mol %) for the oxidation of sulfides with iodosylbenzene, which achieved excellent enantioselectivity [75,76]. The best result in this catalyst system was given by complex 24 in the formation of orthonitrophenyl methyl sulfoxide that was isolated in 94% yield and 94% ee [76]. [Pg.341]

The asymmetric oxidation of sulphides to chiral sulphoxides with t-butyl hydroperoxide is catalysed very effectively by a titanium complex, produced in situ from a titanium alkoxide and a chiral binaphthol, with enantioselectivities up to 96%342. The Sharpless oxidation of aryl cinnamyl selenides 217 gave a chiral 1-phenyl-2-propen-l-ol (218) via an asymmetric [2,3] sigmatropic shift (Scheme 4)343. For other titanium-catalysed epoxidations, see Section V.D.l on vanadium catalysis. [Pg.1181]

Finally, it is very important to note that more sophisticated catalysts have been prepared either by introducing bulky and/or chiral substituent on the meso-aryl or pyrrole rings [for recent reviews see, for instance, 36,56e,56f,63] or by inserting the metalloporphyrin into various polymeric materials [64-75, for recent reviews see also 76], These results have shown that this was a good strategy not only toward asymmetric oxidation catalysts, but also toward more regioselec-tive and/or efficient and stable catalysts. [Pg.343]

A broad range of biaryl structures, as is often encountered in various classes of naturally occurring compounds, such as alkaloids, lignans, and tannins, can be prepared by oxidative arylic coupling. Oxidative couplings have also been used to build non-natural skeletons, such as the binaphthol derivatives that play an important role in asymmetric synthesis. [Pg.480]

Scheme 39. Strategies for the asymmetric oxidative coupling of aryl units. Scheme 39. Strategies for the asymmetric oxidative coupling of aryl units.
The most intriguing work in the field of asymmetric oxidative aryl coupling has been directed towards finding catalytic enantioselective reactions. The main goal in these studies has been the synthesis of chiral binaphthyl units as an improvement over stoichiometric chiral reagent enantioselective syntheses. [Pg.527]

As yet, this asymmetric oxidation is successful only with simple aryl alkyl sulfoxides like this one, and the nucleophilic displacement method is much more widely used since it is more general and1 gives products of essentially 100% ee. o R3MgBr 0... [Pg.1266]

In the same year, Fujita s group63 reported the asymmetric oxidation of aryl methyl sulfide by hydroperoxides (TBHP, CHP) and an optically active catalyst formed by a Schiff base-oxovanadium(IV) complex 32, giving (S)-sulfoxides in low ee (up to 40%) (Fig. 4). Later, they developed64 a more promising approach using 33, a binuclear Schiff base-titanium(IV) complex (4 mol% equiv) to catalyze the asymmetric oxidation of methyl phenyl sulfide by trityl hydroperoxide in methanol at 0 °C. The (ft)-methyl phenyl sulfoxide was obtained with 60% ee. [Pg.72]

Until quite recently the isolation of optically active seienoxides has been limited to those contained in steroids (isolated as diastereoisomeis). < The difficulty in obtaining these compounds was attributed to the racemization through the achiral hydrated intermediates. Simple optically active sel enoxides (S-11% ee) were first prepared by kinetic resolution. Direct oxidation of selenides to seienoxides was first reported using optically active oxaziridine derivatives under anhydrous conditions, but the extent of the asymmetric induction was somewhat unsatisfactory with methyl phenyl selenide as substrate (8-9% Recently much improved enantiomeric excesses (45-73%) were achieved with new oxaziridine reagents such as (70). An attempt at the asymmetric oxidation of more bulky selenides was independently carried out using Bu OCl in the presence of (-)-2-octanol (equation 55), but resulted in unsatisfactory enantioselectivities (ee 1%). Much better results were obtained by the oxidation of p-oxyalkyl aryl selenides (ee 18-40% equation 56) 27 gjyj selenides (ee 1-28%) using... [Pg.779]

Asymmetric oxidation of ( )-3-phenyl-2-propenyl aryl selenides under Sharpless conditions (tetraisopropoxy titanium/tartrate/ferr-butyl hydroperoxide) afforded optically active alcohols in moderate to high enantiomeric excess (25-92% ee) and with yields of about 40%31b. The enantioselectivity in this reaction was enhanced remarkably by an ortho nitro group in the aryl ring and the use of diisopropyl tartrate ligand in the Sharpless oxidation. [Pg.509]

In the former case, almost complete stereoselective oxidation to the chiral selenoxides has been accomplished quite recently. The Davis oxidant, 3,3-di-chloro-l,7,7-trimethyl-2 -(phenylsulfonyl)spirobicyclol2.2.11heptane-2,3 -oxa-ziridine, was found to be the most efficient reagent for the enantioselective oxidation of a variety of prochiral alkyl aryl selenides [81. Asymmetric oxidation was accomplished by the treatment of the selenides with 1 molar equivalent of the Davis oxidant at 0°C to afford the corresponding chiral alkyl aryl selenoxides in quantitative yields with 91-95% ee (Scheme 1). The oxidation of methyl phenyl selenide was complete within 1 min, whereas that of triiso-propyl(a bulkier alkyl) phenyl selenide required a few hours. Typical results are... [Pg.204]


See other pages where Aryl asymmetric oxidation is mentioned: [Pg.72]    [Pg.73]    [Pg.292]    [Pg.826]    [Pg.827]    [Pg.828]    [Pg.72]    [Pg.73]    [Pg.292]    [Pg.826]    [Pg.827]    [Pg.828]    [Pg.168]    [Pg.223]    [Pg.490]    [Pg.28]    [Pg.490]    [Pg.337]    [Pg.346]    [Pg.384]    [Pg.76]   
See also in sourсe #XX -- [ Pg.412 ]




SEARCH



Arylic oxidation

Aryls oxides

Asymmetric arylation

Asymmetric oxidation

Oxidative arylation

© 2024 chempedia.info