Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic substitution reactions Friedel-Crafts acylation

Electrophilic Aromatic Substitution Reactions. Friedel-Crafts alkylation, acylation, and the Vilsmeier-Haack formylation, shown below, are excellent reactions for the synthesis of substituted aromatic compounds. [Pg.151]

Friedel-Crafts acylation of aromatic compounds (Section 12 7) Acyl chlorides and carboxylic acid anhydrides acylate aromatic rings in the presence of alumi num chloride The reaction is electrophil ic aromatic substitution in which acylium ions are generated and attack the ring... [Pg.710]

Other typical electrophilic aromatic substitution reactions—nitration (second entry) sul fonation (fourth entry) and Friedel-Crafts alkylation and acylation (fifth and sixth entnes)—take place readily and are synthetically useful Phenols also undergo elec trophilic substitution reactions that are limited to only the most active aromatic com pounds these include mtrosation (third entry) and coupling with diazomum salts (sev enth entry)... [Pg.1002]

PoIysuIfonyIa.tlon, The polysulfonylation route to aromatic sulfone polymers was developed independendy by Minnesota Mining and Manufacturing (3M) and by Imperial Chemical Industries (ICI) at about the same time (81). In the polymerisation step, sulfone links are formed by reaction of an aromatic sulfonyl chloride with a second aromatic ring. The reaction is similar to the Friedel-Crafts acylation reaction. The key to development of sulfonylation as a polymerisation process was the discovery that, unlike the acylation reaction which requires equimolar amounts of aluminum chloride or other strong Lewis acids, sulfonylation can be accompHshed with only catalytic amounts of certain haUdes, eg, FeCl, SbCl, and InCl. The reaction is a typical electrophilic substitution by an arylsulfonium cation (eq. 13). [Pg.332]

The most notable chemistry of the biscylopen-tadienyls results from the aromaticity of the cyclopentadienyl rings. This is now far too extensively documented to be described in full but an outline of some of its manifestations is in Fig. 25.14. Ferrocene resists catalytic hydrogenation and does not undergo the typical reactions of conjugated dienes, such as the Diels-Alder reaction. Nor are direct nitration and halogenation possible because of oxidation to the ferricinium ion. However, Friedel-Crafts acylation as well as alkylation and metallation reactions, are readily effected. Indeed, electrophilic substitution of ferrocene occurs with such facility compared to, say, benzene (3 x 10 faster) that some explanation is called for. It has been suggested that. [Pg.1109]

The synthesis of an alkylated aromatic compound 3 by reaction of an aromatic substrate 1 with an alkyl halide 2, catalyzed by a Lewis acid, is called the Friedel-Crafts alkylation This method is closely related to the Friedel-Crafts acylation. Instead of the alkyl halide, an alcohol or alkene can be used as reactant for the aromatic substrate under Friedel-Crafts conditions. The general principle is the intermediate formation of a carbenium ion species, which is capable of reacting as the electrophile in an electrophilic aromatic substitution reaction. [Pg.120]

The preparation of a formyl-substituted aromatic derivative 3 from an aromatic substrate 1 by reaction with hydrogen cyanide and gaseous hydrogen chloride in the presence of a catalyst is called the Gattermann synthesis This reaction can be viewed as a special variant of the Friedel-Crafts acylation reaction. [Pg.133]

With a substituted aromatic ring compound 2, mixtures of isomeric coupling products may be formed the ort/zo-product usually predominates. The rules for regiochemical preferences as known from electrophilic aromatic substitution reactions (see for example Friedel-Crafts acylation), do not apply here. [Pg.141]

In an initial step the reactive formylating agent is formed from N,N-dimethylformamide (DMF) 2 and phosphorus oxychloride. Other N,N-disubstituted formamides have also found application for example A -methyl-A -phenylformamide is often used. The formylating agent is likely to be a chloromethyl iminium salt 4—also called the Vilsmeier complex (however its actual structure is not rigorously known)—that acts as the electrophile in an electrophilic substitution reaction with the aromatic substrate 1 (see also Friedel-Crafts acylation reaction) ... [Pg.280]

Friedel-Crafts reaction (Section 16.3) An electrophilic aromatic substitution reaction to alkylate or acylate an aromatic ring. [Pg.1242]

Diels-Alder reaction, 493 El reaction, 391-392 ElcB reaction, 393 E2 reaction, 386 Edman degradation, 1032 electrophilic addition reaction, 147-148. 188-189 electrophilic aromatic substitution, 548-549 enamine formation, 713 enol formation, 843-844 ester hydrolysis, 809-811 ester reduction, 812 FAD reactions. 1134-1135 fat catabolism, 1133-1136 fat hydrolysis, 1130-1132 Fischer esterification reaction, 796 Friedel-Crafts acylation reaction, 557-558... [Pg.1305]

A reaction in which an electrophile participates in het-erolytic substitution of another molecular entity that supplies both of the bonding electrons. In the case of aromatic electrophilic substitution (AES), one electrophile (typically a proton) is substituted by another electron-deficient species. AES reactions include halogenation (which is often catalyzed by the presence of a Lewis acid salt such as ferric chloride or aluminum chloride), nitration, and so-called Friedel-Crafts acylation and alkylation reactions. On the basis of the extensive literature on AES reactions, one can readily rationalize how this process leads to the synthesis of many substituted aromatic compounds. This is accomplished by considering how the transition states structurally resemble the carbonium ion intermediates in an AES reaction. [Pg.225]

In keeping with its aromatic character and unsymmetrical charge distribution, azulene undergoes certain typical electrophilic substitution reactions at the 1 and 3 positions. Thus Friedel-Crafts acylation leads to a mixture of 1-ethanoylazulene and 1,3-diethanoylazulene ... [Pg.1084]

Two electrophilic aromatic substitution reactions need to be performed chlorination and Friedel-Crafts acylation. The order in which the reactions are carried out is important chlorine is an ortho, para director, and the acetyl group is a meta director. Since the groups are meta in the desired compound, introduce the acetyl group first. [Pg.295]

The Friedel-Crafts acylation reaction, another example of an electrophilic aromatic substitution reaction, is similar to the Friedel-Crafts alkylation reaction except that the substance that reacts with benzene is an acyl halide,... [Pg.28]

This Lewis acid-catalyzed electrophilic aromatic substitution allows the synthesis of alkylated products via the reaction of arenes with alkyl halides or alkenes. Since alkyl substituents activate the arene substrate, polyalkylation may occur. A valuable, two-step alternative is Friedel-Crafts Acylation followed by a carbonyl reduction. [Pg.109]

The reaction of an aromatic compound with an acyl chloride in the presence of a Lewis acid (usually A1C13) results in the substitution of an acyl group onto the aromatic ring. An example of this reaction, known as the Friedel-Crafts acylation, is provided by the following equation ... [Pg.696]


See other pages where Aromatic substitution reactions Friedel-Crafts acylation is mentioned: [Pg.587]    [Pg.45]    [Pg.606]    [Pg.564]    [Pg.122]    [Pg.53]    [Pg.149]    [Pg.84]    [Pg.122]    [Pg.51]    [Pg.95]    [Pg.4]    [Pg.630]    [Pg.296]    [Pg.697]    [Pg.711]    [Pg.716]    [Pg.724]    [Pg.1021]   
See also in sourсe #XX -- [ Pg.871 , Pg.872 ]




SEARCH



Acyl substitution

Acylation, aromatic

Aromatic Friedel-Crafts reactions

Aromatic substitution Friedel-Crafts acylation

Aromatics Friedel-Crafts acylation

Aromatics acylation

Friedel acylation

Friedel-Crafts reaction acylation

Friedel-Crafts substitution, 223 (

Substitution reactions Friedel-Crafts acylation

Substitution reactions aromatic

Substitutions Friedel-Crafts acylation

© 2024 chempedia.info