Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic silicones

Substituted aroyl- and heteroaroyltrimethylsilanes (acylsilanes) are prepared by the coupling of an aroyl chloride with (Me3Si)2 without decarbonylation, and this chemistry is treated in Section 1.2[629], Under certain conditions, aroyl chlorides react with disilanes after decarbonylation. Thus the reaction of aroyl chlorides with disilane via decarbonylation is a good preparative method for aromatic silicon compounds. As an interesting application, trimel-litic anhydride chloride (764) reacts with dichlorotetramethyidisilane to afford 4-chlorodimethylsilylphthalic anhydride (765), which is converted into 766 and used for polymerization[630]. When the reaction is carried out in a non-polar solvent, biphthalic anhydride (767) is formed[631]. Benzylchlorodimethylsilane (768) is obtained by the coupling of benzyl chloride with dichlorotetramethyl-disilane[632,633]. [Pg.241]

Silane coupling agents may contribute hydrophilic properties to the interface, especially when amino functional silanes, such as epoxies and urethane silanes, are used as primers for reactive polymers. The primer may supply much more amine functionality than can possibly react with the resin at the interphase. Those amines that could not react are hydrophilic and, therefore, responsible for the poor water resistance of bonds. An effective way to use hydrophilic silanes is to blend them with hydrophobic silanes such as phenyltrimethoxysilane. Mixed siloxane primers also have an improved thermal stability, which is typical for aromatic silicones [42]. [Pg.796]

TABLE 11. Partial rate factors for electrophilic aromatic substitution of some aromatic silicon compounds... [Pg.918]

In terms of preparing an aromatic silicon species, the strategy was to prepare further siliconates where the silicon atom would actually be part of a 9-silaanthracene. If the methylene carbon (10-position) of the silaanthracene was then made cationic by formal removal of a proton, the silicon atom might end up in a cyclic array of... [Pg.168]

Since alkyl-silicon bonds are known to be much more resistant to acidolysis than aromatic-silicon bonds, p-trimethylsilylmethylphenol has been condensed with formaldehyde (20), and terpolymers with m-cresol give good etch resistance and good images. Resorcinol-based novolac resins that contain silicon connected via an alkyl ether linkage (21) are also stable to the acidic polymerization conditions. These polymers are also reported to yield submicron images and to function in a bilayer mode. [Pg.990]

Besides stmctural variety, chemical diversity has also increased. Pure silicon fonns of zeolite ZSM-5 and ZSM-11, designated silicalite-l [19] and silicahte-2 [20], have been synthesised. A number of other pure silicon analogues of zeolites, called porosils, are known [21]. Various chemical elements other than silicon or aluminium have been incoriDorated into zeolite lattice stmctures [22, 23]. Most important among those from an applications point of view are the incoriDoration of titanium, cobalt, and iron for oxidation catalysts, boron for acid strength variation, and gallium for dehydrogenation/aromatization reactions. In some cases it remains questionable, however, whether incoriDoration into the zeolite lattice stmcture has really occurred. [Pg.2782]

Silicone Excellent resistance over unusually wide temperature range [—100 to 260°C (—150 to 500°F)] fair oil resistance poor resistance to aromatic oils, fuels, high-pressure steam, and abrasion... [Pg.2471]

The reaction exhibits other characteristics typical of an electrophilic aromatic substitution. Examples of electrophiles that can effect substitution for silicon include protons and the halogens, as well as acyl, nitro, and sulfonyl groups. The feet that these reactions occur very rapidly has made them attractive for situations where substitution must be done under very mild conditions. ... [Pg.589]

Acetyl hypofluorite is very effective m the fluorination of the aryl-metal (Hg, Ge, or Si) bond, but yields are frequently low. With aryl silicon compounds some competition exists for replacement of an aromatic hydrogen [5i, 52, 55, 54] (equations 25-27). Fluoroxytrifluoromethane fluorinates p-methoxypheny 1 mercuric acetate to givep-fluoroanisole in 86% yield [52]... [Pg.148]

The presence of a tnalkylsUyl group in a fluonnated organic compound may be useful to direct further transformations of that matenal Yet m some instances it IS the fluonnated substituent that controls the reactions of the tnalkylsdyl group Contrary to predictions, treatment of tert-hnlyX 3-tnfluoromethyl-6-tnmethylsilyl-phenyl carbamate with rert-butyllithium results m metallation of one of the methyl groups attached to silicon rather than that of the aromatic nng [90] (equation 75)... [Pg.599]

The primary function of this section is to organize data to faalitate NMR structure elucidation of organofluonne compounds Selectively fluonnated aliphatics are emphasized, whereas fluonnated aromatics are covered m less detail Inorganic nitrogen, phosphorus, silicon, and sulfur fluondes are not included, although compounds containing these and other heteroatoms attached to CF3 are the focus of multmuclear data presented later (see Table 16)... [Pg.1039]

The acid cleavage of the aryl— silicon bond (desilylation), which provides a measure of the reactivity of the aromatic carbon of the bond, has been applied to 2- and 3-thienyl trimethylsilane, It was found that the 2-isomer reacted only 43.5 times faster than the 3-isomer and 5000 times faster than the phenyl compound at 50,2°C in acetic acid containing aqueous sulfuric acid. The results so far are consistent with the relative reactivities of thiophene upon detritia-tion if a linear free-energy relationship between the substituent effect in detritiation and desilylation is assumed, as the p-methyl group activates about 240 (200-300) times in detritiation with aqueous sulfuric acid and about 18 times in desilylation. A direct experimental comparison of the difference between benzene and thiophene in detritiation has not been carried out, but it may be mentioned that even in 80.7% sulfuric acid, benzene is detritiated about 600 times slower than 2-tritiothiophene. The aforementioned consideration makes it probable that under similar conditions the ratio of the rates of detritiation of thiophene and benzene is larger than in the desilylation. A still larger difference in reactivity between the 2-position of thiophene and benzene has been found for acetoxymercuration which... [Pg.44]

Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc. Figure 12.22 SFC-GC analysis of aromatic fraction of a gasoline fuel, (a) SFC trace (b) GC ttace of the aromatic cut. SFC conditions four columns (4.6 mm i.d.) in series (silica, silver-loaded silica, cation-exchange silica, amino-silica) 50 °C 2850 psi CO2 mobile phase at 2.5 niL/min FID detection. GC conditions methyl silicone column (50 m X 0.2 mm i.d.) injector split ratio, 80 1 injector temperature, 250 °C earner gas helium temperature programmed, — 50 °C (8 min) to 320 °C at a rate of 5 °C/min FID detection. Reprinted from Journal of Liquid Chromatography, 5, P. A. Peaden and M. L. Lee, Supercritical fluid chromatography methods and principles , pp. 179-221, 1987, by courtesy of Marcel Dekker Inc.
Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

Unsolvated organomagnesium compounds have been recommended for the synthesis of organometallic derivatives of mercury, boron, aluminum, silicon, germanium, tin, phosphorus, arsenic, and antimony6-8 and have been used in procedures for the alkylation of aromatic rings and for the production of various polymerization catalysts.4 9... [Pg.117]


See other pages where Aromatic silicones is mentioned: [Pg.11]    [Pg.109]    [Pg.93]    [Pg.103]    [Pg.163]    [Pg.103]    [Pg.93]    [Pg.103]    [Pg.2]    [Pg.167]    [Pg.169]    [Pg.171]    [Pg.173]    [Pg.175]    [Pg.175]    [Pg.177]    [Pg.179]    [Pg.11]    [Pg.109]    [Pg.93]    [Pg.103]    [Pg.163]    [Pg.103]    [Pg.93]    [Pg.103]    [Pg.2]    [Pg.167]    [Pg.169]    [Pg.171]    [Pg.173]    [Pg.175]    [Pg.175]    [Pg.177]    [Pg.179]    [Pg.391]    [Pg.467]    [Pg.117]    [Pg.240]    [Pg.26]    [Pg.23]    [Pg.490]    [Pg.518]    [Pg.138]    [Pg.281]    [Pg.24]    [Pg.606]    [Pg.156]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Aromatic Rings with Boron and Silicon Substituents

SILICON COMPOUNDS WITH POTENTIAL THREE-DIMENSIONAL AROMATICITY

Silicon aromatic rings

Silicon compounds aromatic

Silicon containing aromatic polymers

Silicon difluoride, reaction with aromatic

Silicone aromatic polyamides

Silicone aromatic polyesters

Silicone-Containing Aromatic Polymers

© 2024 chempedia.info