Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic heterocycles pyridine

The study of the enamine structure may be associated, to a certain degree, with the problem of the so-called pseudobases an instructive, but somewhat specialized, review of these compounds was contributed by the late Professor Beke 47 to the first volume of this series. The name pseudobases was given by Hantzsch,48 towards the end of the last century, to those a-aminocarbinols which undergo a structural change during salt formation and yield salts with the loss of one molecule of water. The liberation of pseudobases from their salts is accompanied by rehydration. This behavior has been observed with a,/3-unsaturated heterocyclic compounds and, to a certain degree, with aromatic heterocyclic pyridine derivatives. As formulated by Gadamer,49 the pseudobases represent a potential tautomeric system of three components, the quaternary hydroxide A, the carbinolamine B, and the open-chain amino-carbonyl derivative C, in which all three components exist in a mobile equilibrium ... [Pg.156]

Cyclization of 1,5-dicarbonyl compounds with nitrogen nucleophiles leads to the six-membered aromatic heterocycle pyridine. [Pg.1187]

Substitution in aromatic hydrocarbon naturally shifts the wavelength of fluorescence in agreement with the effect of the same substitution on the absorption spectrum. Alkyl substitution has little effect. Chlorine and bromine weaken the florescence and iodine completely inhibits it. The simplest aromatic heterocyclics, pyridine, pyrrole, furan and thiophene do not show fluorescence. [Pg.281]

The aromatic heterocycle phosphabenzene C5H5P (analogous to pyridine) was reported in 1971, some years after its triphenyl derivative 2,4,6-Ph3C5H2P. See also HP=CH2 29) nd [P(CN)2] ° (p. 484). The burgeoning field of heterocyclic phosphorus compounds featuring... [Pg.544]

Figure 15.8 Pyridine and pyrimidine are nitrogen-containing aromatic heterocycles with tt electron arrangements much like that of benzene. Both have a lone pair of electrons on nitrogen in an sp2 orbital in the plane of the ring. Figure 15.8 Pyridine and pyrimidine are nitrogen-containing aromatic heterocycles with tt electron arrangements much like that of benzene. Both have a lone pair of electrons on nitrogen in an sp2 orbital in the plane of the ring.
Other kinds of substances besides benzene-like compounds can also be aromatic. For example, the cyclopentadienyl anion and the cycloheptatrienyl cation are aromatic ions. Pyridine, a six-membered, nitrogen-containing heterocycle, is aromatic and resembles benzene electronically. Pyrrole, a hve-membered heterocycle, resembles the cyclopentadienyl anion. [Pg.539]

The scope and mechanism of the isomerization of arylamines to methyl-substituted aromatic heterocycles have been studied. Aniline, toluidines, naphthylamines and m-phenylenediamine all gave the corresponding ortho-methyl-substituted aza-aromatics when exposed to high NHj pressure and elevated temperature in the presence of acid catalysts, e.g., zeolites. The yiel of pyridines formed by this process range from low to moderate <95JC(155)268>. [Pg.226]

As already discussed in Section 7.4, hexamethyidisiiane 857 (which is produced on a technical scale), in the presence of catalytic amounts of tetrabutylammonium fluoride di- or trihydrate in THF, reduces aromatic heterocyclic N-oxides such as pyridine N-oxide 860, quinoline N-oxide 877, or isoquinoline N-oxide 879 to the heterocycles [95] and nitrones to Schiff-bases. Aromatic nitro compounds such as nitrobenzene are reduced analogously to azo compounds such as azobenzene [96]. As mentioned in Section 7.5, secondary aliphatic nitro groups are reduced to oximes. [Pg.277]

With aliphatic amines, the decomposition catalysis is moderate with heterocyclic aromatic amines (pyridine, quinoline), 0.1 % of amine is sufficient to cause maleic anhydride to decompose. An accident has also been mentioned with NaOH. This decomposition also takes place in the presence of sodium, lithium, ammonium, potassium, calcium, barium, magnesium and beryllium cations. [Pg.332]

Interaction, in presence of diluent below 0°C, with isopropylamine or isobuty-lamine caused separation of explosive liquids, and with aniline, phenylhydrazine and 1,2-diphenylhydrazine, explosive solids [1], In absence of diluents, contact with most aliphatic or non-aromatic heterocyclic amines often leads to uncontrolled oxidation and/or explosions [2], During oxidation of two steroidal dienes in dry pyridine at —35 to —40°C, on one occasion each of the reactions was accompanied by violent explosions [3],... [Pg.1339]

Another interesting class of five-membered aromatic heterocycles has recently been published by Tron et al. [54]. These compounds have biological activity in the nM range. An example of the formation of these furazan (1,2,5-oxadiazole) derivatives is shown in Scheme 9. The diol 50 was oxidized to the diketone 51 using TEMPO and sodium hypochlorite. Transformation to the bisoxime 52 was performed in an excess of hydroxylamine hydrochloride and pyridine at high temperature for several days. Basic dehydration of 52 formed two products (53a and b). A Mitsunobu reaction was then employed using toluene as solvent to form compound 53b in 24% yield. [Pg.31]

Heterocycles with conjugated jr-systems have a propensity to react by substitution, similarly to saturated hydrocarbons, rather than by addition, which is characteristic of most unsaturated hydrocarbons. This reflects the strong tendency to return to the initial electronic structure after a reaction. Electrophilic substitutions of heteroaromatic systems are the most common qualitative expression of their aromaticity. However, the presence of one or more electronegative heteroatoms disturbs the symmetry of aromatic rings pyridine-like heteroatoms (=N—, =N+R—, =0+—, and =S+—) decrease the availability of jr-electrons and the tendency toward electrophilic substitution, allowing for addition and/or nucleophilic substitution in yr-deficient heteroatoms , as classified by Albert.63 By contrast, pyrrole-like heteroatoms (—NR—, —O—, and — S—) in the jr-excessive heteroatoms induce the tendency toward electrophilic substitution (see Scheme 19). The quantitative expression of aromaticity in terms of chemical reactivity is difficult and is especially complicated by the interplay of thermodynamic and kinetic factors. Nevertheless, a number of chemical techniques have been applied which are discussed elsewhere.66... [Pg.6]

Nitrogen. Pyridine is one of the most important heterocycles. The aromaticity of pyridine was intensively connected to structural considerations and chemical behavior. The relative difference between the aromaticity of benzene and pyridine is controversial generally calculations give similar orders of magnitude and differences depend on the criterion of aromaticity considered and the mode of calculation used. A comprehensive review on the theoretical aspects in connection with the aromaticity of pyridine was published.191 Pyridine is about as aromatic as benzene according to theoretical calculations and to experimental data, while quinoline is about as aromatic as naphthalene and more aromatic than isoquinoline.192193 The degrees of aromaticity of pyridine derivatives strongly depend on their substituents. [Pg.24]

Aromatic N-containing heterocycles (pyridine, imidazole etc.,) and their alkyl derivatives represent an important group of products and they have received considerable attention because of their various applications. For instance, methyl pyridines (picolines) and dimethyl pyridines (lutidines) are a class of industrially valuable compounds for the production of dyes and fine chemicals [108]. Sreekumar et al [109] reported pyridine methylation to 3-picolines over Zni xCoxFe204 spinel systems at reaction temperature between 325 and 425°C. The... [Pg.185]

Pyridine is a base (pATa pyridinium cation 5.2), but it is a considerably weaker base than a typical non-aromatic heterocyclic amine such as piperidine (pATa piperidinium cation 11.2). This is because the lone pair electrons in pyridine are held in an sp orbital. The increased character of this orbital, compared with the sp orbital in piperidine, means... [Pg.408]

Our study of heterocyclic compounds is directed primarily to an understanding of their reactivity and importance in biochemistry and medicine. The synthesis of aromatic heterocycles is not, therefore, a main theme, but it is useful to consider just a few examples to underline the application of reactions we have considered in earlier chapters. From the beginning, we should appreciate that the synthesis of substituted heterocycles is probably not best achieved by carrying out substitution reactions on the simple heterocycle. It is often much easier and more convenient to design the synthesis so that the heterocycle already carries the required substituents, or has easily modified functions. We can consider two main approaches for heterocycle synthesis, here using pyridine and pyrrole as targets. [Pg.457]

Molecular energy levels in aromatic heterocycles, ir - ir, n - ir electronic transitions in pyridine. Phosphorescence and fluorescence... [Pg.100]


See other pages where Aromatic heterocycles pyridine is mentioned: [Pg.528]    [Pg.529]    [Pg.254]    [Pg.528]    [Pg.529]    [Pg.528]    [Pg.529]    [Pg.759]    [Pg.534]    [Pg.547]    [Pg.528]    [Pg.529]    [Pg.254]    [Pg.528]    [Pg.529]    [Pg.528]    [Pg.529]    [Pg.759]    [Pg.534]    [Pg.547]    [Pg.302]    [Pg.18]    [Pg.119]    [Pg.312]    [Pg.166]    [Pg.312]    [Pg.105]    [Pg.118]    [Pg.220]    [Pg.209]    [Pg.68]    [Pg.543]    [Pg.119]    [Pg.558]    [Pg.75]    [Pg.114]    [Pg.18]    [Pg.36]    [Pg.120]   
See also in sourсe #XX -- [ Pg.391 , Pg.392 , Pg.393 , Pg.394 ]




SEARCH



Aromaticity aromatic heterocycles

Aromaticity heterocyclics

Heterocycles aromatic

Heterocycles aromatization

Heterocycles pyridine

Heterocyclic aromatics

Heterocyclics pyridines

Pyridine aromaticity

© 2024 chempedia.info