Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds copper chloride

Aromatic amines form addition compounds and complexes with many inorganic substances, such as ziac chloride, copper chloride, uranium tetrachloride, or boron trifluoride. Various metals react with the amino group to form metal anilides and hydrochloric, sulfuric, or phosphoric acid salts of aniline are important intermediates in the dye industry. [Pg.229]

Hydrolysis, of ethyl a-(isopropylid-eneaminooxy)propionate, 48,121 of halogenated aromatic compounds in the presence of copper and cuprous oxide, 48, 96 of fl-iso valerol ac tam-N-su 1 fony 1 chloride to give /S-isovalerolactam, 46,51... [Pg.76]

Sulfur compounds are most commonly removed or converted to a harmless form by chemical treatment with lye. Doctor solution, copper chloride, or similar treating agents (Speight, 1999). Hydrorefining processes (Speight, 1999) are also often used in place of chemical treatments. When used as a solvent, naphtha is selected for its low sulfur content and the usual treatment processes remove only sulfur compounds. Naphtha, with its small aromatic content, has a slight odor, but the aromatics increase the solvent power of the naphtha and there is no need to remove aromatics unless odor-free naphtha is specified. [Pg.259]

The ARS Technologies, Inc., Ferox process is an in situ remediation technology for the treatment of chlorinated hydrocarbons, leachable heavy metals, and other contaminants. The process involves the subsurface injection and dispersion of reactive zero-valence iron powder into the saturated or unsaturated zones of a contaminated area. ARS Technologies claims that Ferox is applicable for treating the following chemicals trichloroethene (TCE), 1,1,1-trichloroethane (TCA), carbon tetrachloride, 1,1,2,2-tetrachloroethane, lindane, aromatic azo compounds, 1,2,3-trichloropropane, tetrachloroethene (PCE), nitro aromatic compounds, 1,2-dichloroethene (DCE), vinyl chloride, 4-chlorophenol, hexachloroethane, tribromomethane, ethylene dibromide (EDB), polychlorinated biphenyls (PCBs), Freon-113, unexploded ordinances (UXO), and soluble metals (copper, nickel, lead, cadmium, arsenic, and chromium). [Pg.377]

Shipment and. Storage, Sulfur monochloride is minimally corrosive to carbon steel and iron when dry. If it is necessary to avoid discoloration caused by iron sulfide formation or chloride stress cracking, 310 stainless steel should be used. Sulfur monochloride is shipped in tank cars, tank trucks, and steel drums. When wet, it behaves like hydrochloric acid and attacks steel, cast iron, aluminum, stainless steels, copper and copper alloys, and many nickel-based materials. Alloys of 62 Ni—28 Mo and 54 Ni—15 Cr—16 Mo are useful under these conditions. Under DOT HM-181 sulfur monochloride is classified as a Poison Inhalation Hazard (PIH) Zone B, as well as a Corrosive Material (DOT Hazard Class B). Shipment information is available (140). Uses, The reaction of S-CL with aromatic compounds can yield disulfides or mixtures of mono-, di-, and polysulfides. [Pg.138]

Chlorobiphenyts. These compounds can be synthesized by direct chlorination of biphenyl in [he presence of iron or other calalysts. Other means of preparation include reaction of diazotized aminobiphenyl with copper chloride. Treatment of chlorobiphenyls at elevated temperatures (300—400°C] with strong caustic yields hydroxybiphenyls. Various reactions, normal to aromatic systems, will occur—usually on the unsubstlluted ring. [Pg.368]

The cyclopropanation of alkenes, alkynes, and aromatic compounds by carbenoids generated in the metal-catalyzed decomposition of diazo ketones has found widespread use as a method for carbon-carbon bond construction for many years, and intramolecular applications of these reactions have provided a useful cyclization strategy. Historically, copper metal, cuprous chloride, cupric sulfate, and other copper salts were used most commonly as catalysts for such reactions however, the superior catalytic activity of rhodium(ll) acetate dimer has recently become well-established.3 This commercially available rhodium salt exhibits high catalytic activity for the decomposition of diazo ketones even at very low catalyst substrate ratios (< 1%) and is less capricious than the old copper catalysts. We recommend the use of rhodium(ll) acetate dimer in preference to copper catalysts in all diazo ketone decomposition reactions. The present synthesis describes a typical cyclization procedure. [Pg.184]

The trimerization of alkynes is a general and useful method for the preparation of aromatic compounds [152]. However, this method has serious limitations when three different alkynes are used, as numerous regioisomers may be formed. Taka-hashi and co-workers have reported the beginnings of a solution using zirconocy-clopentadienes prepared in situ from two different alkynes. Substituted arenes were obtained upon addition of a third alkyne to the organometallic complex in the presence of copper chloride [153] or a nickel complex [154], This approach is nevertheless limited by the fact that at least one of the alkynes must be symmetrical, and by... [Pg.265]

In chapter 16 we shall discover that vinyl-copper reagents can be prepared with stereochemical control over double bond geometry and acylated directly with acid chlorides. We shall also meet vinyl silanes and see how they too can be acylated with acid chlorides. In this chapter we shall consider only the acylation of alkenes themselves with acid chlorides, that is the aliphatic Friedel-Crafts reaction.15 The normal Friedel-Crafts reaction 66 combines an aromatic compound with an acid chloride and a Lewis acid to give a cation 67 which loses a proton to give an aryl ketone 68. [Pg.63]

Although it is possible to prepare aryl chlorides and aryl bromides by electrophilic aromatic substitution, it is often necessary to prepare these compounds from an aromatic amine. The amine is converted to the corresponding diazonium salt and then treated with copper chloride or copper(I) bromide as appropriate. [Pg.893]

When an aromatic compound is treated with a mixture of carbon monoxide and hydrogen chloride in the presence of aluminum chloride and copper(i) chloride, the derived aromatic aldehyde is obtained. Presumably formyl chloride is formed from the carbon monoxide and hydrogen chloride, although it is stable only as the adduct with aluminum chloride. [Pg.942]

Higher aliphatic and aromatic olefins as well as substituted aromatic olefins with oxygen functions are oxidized in THF/water and a solid catalyst Pd°/C together with KBrOg to give the corresponding carbonyl compounds, thus also avoiding the use of copper chloride [90]. [Pg.155]

Alternatively in aromatic compounds, the chlorine can be introduced by reacting the diazonium ion with copper(I) chloride ... [Pg.129]

Highly nucleophilic aromatic compounds are capable of arylating acyl-pyridinium salts. The first example of this striking reaction was described by Koenigs and Ruppelt s ho observed the formation of 4-(/>-dimethyl-aminophenyl) pyridine from pyridine, benzoyl chloride and dimethyl-aniline in the presence of copper. Benzaldehyde is also formed s, 736 and the copper is not necessaryThe dihydropyridine (105) is probably an intermediate. Other examples of the reaction are known s, 493 but attempts to isolate the intermediates have failed , though that from dimethyl-m-toluidine may have been obtained. In contrast, the dihydropyridines (106) were isolated when indole was the nucleophile. Skatole reacted similarly, at the 2-position of the indole nucleus, giving the fully aromatic 3-methyl-2-(4 -pyridyl)indole. These reactions failed with 2- and 4-picoline . Similar reactions occur between acylpyridinium salts and pyrroles (p. 71). [Pg.223]


See other pages where Aromatic compounds copper chloride is mentioned: [Pg.61]    [Pg.221]    [Pg.17]    [Pg.73]    [Pg.166]    [Pg.61]    [Pg.923]    [Pg.209]    [Pg.221]    [Pg.923]    [Pg.175]    [Pg.266]    [Pg.358]    [Pg.333]    [Pg.91]    [Pg.398]    [Pg.1893]    [Pg.847]    [Pg.186]    [Pg.2]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Chloride compounds

Chlorides aromatic

Copper Compounds chloride

Copper aromatic compounds

Copper chloride

Copper compounds

© 2024 chempedia.info