Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic Butyl methacrylate

Fig. 6.24. Electrochromatographic separation of aromatic acids (a) and anilines (b) on monolithic capillary columns. (Reprinted with permission from [14]. Copyright 2000 Elsevier). Conditions monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) stationary phase with 0.3 wt. % 2-acrylamido-2-methyl-l-propanesulfonic acid pore size, 750 nm UV detection at 215 nm voltage, 25 kV pressure in vials, 0.2 MPa injection, 5 kV for 3 s. (a) capillary column, 100 pm i.d. x 30 cm (25 cm active length) mobile phase, 60 40 vol./vol mixture of acetonitrile and 5 mmol/L phosphate buffer pH 2.4. Peaks 3,5-dihydroxybenzoic acid (1), 4-hydroxybenzoic acid (2), benzoic acid (3), 2-toluic acid (4), 4-chlorobenzoic acid (5), 4-bromobenzoic acid (6), 4-iodobenzoic acid (7). (b) capillary column, 100 pm i.d. x 28 cm (25 cm active length) mobile phase, 80 20 vol./vol mixture of acetonitrile and 10 mmol/L NaOH pH 12. Peaks 2-aminopyridine (1), 1,3,5-collidine (2), aniline (3), N-ethylaniline (4), N-butylaniline (5). Fig. 6.24. Electrochromatographic separation of aromatic acids (a) and anilines (b) on monolithic capillary columns. (Reprinted with permission from [14]. Copyright 2000 Elsevier). Conditions monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) stationary phase with 0.3 wt. % 2-acrylamido-2-methyl-l-propanesulfonic acid pore size, 750 nm UV detection at 215 nm voltage, 25 kV pressure in vials, 0.2 MPa injection, 5 kV for 3 s. (a) capillary column, 100 pm i.d. x 30 cm (25 cm active length) mobile phase, 60 40 vol./vol mixture of acetonitrile and 5 mmol/L phosphate buffer pH 2.4. Peaks 3,5-dihydroxybenzoic acid (1), 4-hydroxybenzoic acid (2), benzoic acid (3), 2-toluic acid (4), 4-chlorobenzoic acid (5), 4-bromobenzoic acid (6), 4-iodobenzoic acid (7). (b) capillary column, 100 pm i.d. x 28 cm (25 cm active length) mobile phase, 80 20 vol./vol mixture of acetonitrile and 10 mmol/L NaOH pH 12. Peaks 2-aminopyridine (1), 1,3,5-collidine (2), aniline (3), N-ethylaniline (4), N-butylaniline (5).
AA acac alt AIBN Ar Bd Bu BuA BuMA BzMA CMSty CR CT CTFE DBP DPn EA HEA HEMA HFP acrylamide acetylacetonate alternating azobisisobutyronitrile aromatic group butadiene n-butyl n-butyl acrylate n-butyl methacrylate benzyl methacrylate chloromethyl styrene counter-radical transfer constant chlorotrifluoroethylene dibenzoyl peroxide average degree of polymerization in number ethyl acrylate 2-hydroxyethyl acrylate 2-hydroxyethyl methacrylate hexafluoropropene... [Pg.88]

As the solvent dependence of the chemical shift of methyl methacrylate is almost the same as that of 7-butyl methacrylate bearing the bulky ester group, the interaction between the carbonyl or alkoxy group and the solvent molecule does not seem to be important. These results show that the trans olefinic proton interacts with the aromatic ring. This interaction might participate in the solvent effect on kp, especially in the polymerization of methacrylates whose kp values slightly change with solvent. [Pg.72]

Incorporation of monomers with similar characteristics to the hydrophobic tails of the surfactants involved (typically alkane chains of DODAB and DMPC) tends to suppress phase separation somewhat, and results in either multi-polymer bead aggregates (e.g., necklaces) or parachutes containing an elliptical rather than a spherical latex bead. Copolymerization of butyl methacrylate with ethylene glycol dimethacrylate in DODAB vesicles resulted in polymer necklaces where the polymer beads appear randomly dispersed in the vesicle bilayer [15] in contrast to the polymer shells observed by Hotz and Meier [10] for the same reaction in DODAC vesicles. Similarly, polymerization of octadecylacry-late, another straight-chain monomer, in DODAB vesicles produced parachutes with extremely elHpsoidal polymer beads in contrast to the rather spherical beads observed commonly for the polymerization of aromatic monomers such as styrene in DODAB [12]. Presumably these differences are caused by an increased compatibility between the surfactant bilayer and the monomer chosen. [Pg.208]

High-molecular mass surfactants such as butyl acrylate-butyl methacrylate-methacrylic acid copolymer sodium salts, starburst dendrimers, poly(amidoamines), and diaminobutane-based poly(propyleneimine) as well as cationic polyelectrolytes (ionenes) had all been presented as successful secondary phases for aromatic compounds. The determination of 10 nitrophenols in glycine buffers modified by 3-CD (0-10 mmolL" ) and polyvinylpyrrolidone (PVP) (0.5-2.5% w/v) is an example of application of polymer-based electrolytes to rain, tap, and process water. ... [Pg.917]

For example, the early monomer mixtures contained crosslinker such as ethylene dimethacrylate and trimethylolpropane trimethacrylate, monovinyl monomers such as butyl methacrylate, and AMPS. The initiator was originally 2,2 -azobisisobutyronitrile. However, the use of aromatic phenone initiators later enabled significant acceleration of the polymerization process such that it was completed in several minutes as opposed to more than 12 h. A large number of various porogenic solvents was also tested. [Pg.1313]

Aliphatic hydrocarbons, naphthas, gasoline, or paraffin hydrocarbons are chemically inert and are thus very stable solvents [14.262], [14.263]. Aliphatic hydrocarbons exhibit a good solvency for mineral oils, fatty oils (with the exception of castor oil), waxes, and paraffin. They also dissolve rubber, polyisobutene, molten polyethylene, poly(butyl acrylate), poly(butyl methacrylate), and poly(vinyl ethers). However, most other polymers, polar resins, cellulose derivatives, and most paint binders are insoluble. Resins and binders with a low polarity dissolve less readily in aliphatic hydrocarbons than in aromatic hydrocarbons. [Pg.327]

Henrici-Olive and Olive were the first to put forward the hypothesis that complexes are sometimes formed between the active centre and the monomer and or/solvent [45], As only the complex with monomer is capable of propagation, part of the centres is inhibited and the polymerization rate is reduced. This theory was found to be valid with styrene [46], but not with MMA [47]. Burnett called attention to the important circumstance that radicals solvated in various ways may react differently, or at least at different rates [47]. His conclusions were based on kinetic studies of MMA polymerization in various halogenated aromatics. In the copolymerization of butyl vinyl ether with methacrylates, complex formation between the active centre and condensed aromatics prior to monomer addition was observed by Shaik-hudinov et al. [48], The growing polymer forms a stable donor-acceptor complex with naphthalene, described by the formula. [Pg.177]

Examples of homopolymers are given. Poly(4-vinylphenol) was prepared as a prepolymer for the subsequent alkylation [55]. Poly[2-(4-vinylbenzyl)hydroqui-none] 65 is an example of the unhindered phenolic antioxidant for rubbers. Many homopolymers bear a hindered phenolic moiety. Homopolymer 66 was proposed for blending with BR and IR [56]. Other examples are poly[vinyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] [57] (67), poly(3,5-di-/ert-butyl-4-hydroxy-benzyl methacrylate) [58] (68) or poly[iV-3,5-di-tert-butyl-4-hydroxybenzyl) male-imide] [59] (69). Numerous polymeric antioxidants are functionalized with aromatic amine groups. Poly(4-anilinophenyi methacrylate) [53] (70) serves as an example. [Pg.87]


See other pages where Aromatic Butyl methacrylate is mentioned: [Pg.490]    [Pg.368]    [Pg.389]    [Pg.208]    [Pg.211]    [Pg.17]    [Pg.424]    [Pg.71]    [Pg.234]    [Pg.237]    [Pg.273]    [Pg.702]    [Pg.166]    [Pg.119]    [Pg.69]    [Pg.240]    [Pg.8674]    [Pg.100]    [Pg.177]    [Pg.259]    [Pg.172]    [Pg.196]    [Pg.982]    [Pg.866]    [Pg.368]    [Pg.396]    [Pg.18]    [Pg.232]    [Pg.181]    [Pg.396]    [Pg.181]    [Pg.115]    [Pg.133]    [Pg.165]    [Pg.181]    [Pg.166]    [Pg.13]    [Pg.356]    [Pg.382]   


SEARCH



Aromatics butyl

Butyl 2-Methacrylate

Butyl methacrylates

© 2024 chempedia.info