Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Area under curve administration

In the total plasma response approach, the bioavailability of a compound is determined by measuring its plasma concentration at different times (up to weeks) after single or long-term ingestion of the compound from supplements or food sources. Generally, a plasma concentration-versus-time plot is generated, from which is determined the area-under-curve (AUC) value used as an indicator of the absorption of the componnd. Here, the term relative bioavailability is more appropriate since AUC valnes of two or more treatments are usually compared. This is in contrast to absolnte bioavailability for which the AUC value of the orally administered componnd is compared to that obtained with intravenous administration taken as a reference (100% absorption). [Pg.149]

Area under curve (AUC] The total area under the plot-of-drug concentration versus time following either a single dose or multiple doses of a specific drug product (e.g., formulation) in a specific patient by a specific route of administration. [Pg.42]

Area under the Curve (AUC) refers to the area under the curve in a plasma concentration-time curve. It is directly proportional to the amount of drug which has appeared in the blood ( central compartment ), irrespective of the route of administration and the rate at which the drug enters. The bioavailability of an orally administered drug can be determined by comparing the AUCs following oral and intravenous administration. [Pg.218]

AUC.dat Sixty-nine subjects were exposed to three different medications containing the same drug substance in a test of equivalence each had blood samples withdrawn at defined time points after administration so as to obtain a curve of plasma level of drug vs. time. The area under such a curve is a measure for the amount of medication the subject s body absorbed through... [Pg.387]

The AUC is a measure of bioavailability, i.e. the amount of substance in the central compartment that is available to the organism. It takes a maximal value under intravenous administration, and is usually less after oral administration or parenteral injection (such as under the skin or in muscle). In the latter cases, losses occur in the gut and at the injection sites. The definition also shows that for a constant dose D, the area under the curve varies inversely with the rate of elimination kp and with the volume of distribution V. Figure 39.6 illustrates schematically the different cases that can be obtained by varying the volume of distribution Vp and the rate of elimination k both on linear and semilogarithmic diagrams. These diagrams show that the slope (time course) of the curves are governed by the rate of elimination and that elevation (amplitude) of the curve is determined by the volume of distribution. [Pg.457]

The area under the PCP concentration-time curve (AUC) from the time of antibody administration to the last measured concentration (Cn) was determined by the trapezoidal rule. The remaining area from Cn to time infinity was calculated by dividing Cn by the terminal elimination rate constant. By using dose, AUC, and the terminal elimination rate constant, we were able to calculate the terminal elimination half-life, systemic clearance, and the volume of distribution. Renal clearance was determined from the total amount of PCP appearing in the urine, divided by AUC. Unbound clearances were calculated based on unbound concentrations of PCP. The control values are from studies performed in our laboratory on dogs administered similar radioactive doses (i.e., 2.4 to 6.5 pg of PCP) (Woodworth et al., in press). Only one of the dogs (dog C) was used in both studies. [Pg.136]

Table 2 Peak Plasma Levels and Areas Under Plasma Concentration Time Curves Following Oral and Intravenous Administration to Men... Table 2 Peak Plasma Levels and Areas Under Plasma Concentration Time Curves Following Oral and Intravenous Administration to Men...
Thus, %F is defined as the area under the curve normalized for administered dose. Blood drug concentration is affected by the dynamics of dissolution, solubility, absorption, metabolism, distribution, and elimination. In addition to %F, other pharmacokinetic parameters are derived from the drug concentration versus time plots. These include the terms to describe the compound s absorption, distribution, metabolism and excretion, but they are dependent to some degree on the route of administration of the drug. For instance, if the drug is administered by the intravenous route it will undergo rapid distribution into the tissues, including those tissues that are responsible for its elimination. [Pg.445]

Ohzawa et al [114] studied the absorption, distribution, and excretion of 14C miconazole in male rats during and after consecutive oral administration at a dose of 10 mg/kg once a day for 15 days. During consecutive administration, the plasma concentration of radioactivity reached the steady state on day 4 and was 0.48 approximately 0.52 pg eq./mL at 24 h after each dose. After the final dose, the plasma concentration of radioactivity reached the maximum level of 1.67 pg eq./ mL at 7.5 h and declined with a half-life of about 18.68 h. The area under the curve 24 h was 28.3 pg h/mL, which is close to the area under the curve O-oo of a single oral dose. [Pg.60]

Ward et al. [125] investigated the disposition of 14C-radiolabeled primaquine in the isolated perfused rat liver preparation, after the administration of 0.5, 1.5, and 5 mg doses of the drug. The pharmacokinetics of primaquine in the experimental model was dependent on dose size. Increasing the dose from 0.5 to 5 mg produced a significant reduction in clearance from 11.6 to 2.9 mL/min. This decrease was accompanied by a disproportionate increase in the value of the area under the curve from 25.4 to 1128.6 pg/mL, elimination half-life from 33.2 to 413 min, and volume of distribution from 547.7 to 1489 mL. Primaquine exhibited dose dependency in its pattern of metabolism. While the carboxylic acid derivative of primaquine was not detected perfusate after the 0.5 mg dose, it was the principal perfusate metabolite after 5 mg dose. Primaquine was subject to extensive biliary excretion at all doses, the total amount of 14C-radioactivity excreted in the bile decreased from 60 to 30%i as the dose of primaquine was increased from 0.5 to 5 mg. [Pg.198]

The answer is e. (Hardman, p 21J The fraction of a drug dose absorbed after oral administration is affected by a wide variety of factors that can strongly influence the peak blood levels and the time to peak blood concentration. The Vd and the total body clearance (Vd x first-order fte) also are important in determining the amount of drug that reaches the target tissue. Only the area under the blood concentration-time curve, however, reflects absorption, distribution, metabolism, and excretion factors it is the most reliable and popular method of evaluating bioavailability... [Pg.46]

Quantitative assessment of the extent of absorption (absolute bioavailability) is most rigorously obtained by comparison of the areas under the plasma concentration-time curves (after adjusting for dose) following IV and oral administration. However, even after oral administration alone some idea of absorption or bioavailability can be obtained in the following ways ... [Pg.769]

Absolute systemic bioavailabUity (absorbed fraction of the dose or concentration administered) can only be calculated by comparing the so-called Area Under the Plasma Curve (AUC, the area under the curve in a plot of the concentration of a substance in the plasma against time) after oral, inhalation, or dermal administration with the AUC after direct administration into the systemic circulation, e.g., after intravenous administration. In order to obtain a rehable estimate for AUC after single administration, it is necessary to have blood samples for 3-5 half-hves. In case data are not available for a calculation of the AUC, the absorbed fraction can be indicated from data on the amount of the parent compound and its metabohte(s) excreted in the urine, feces, and exhaled air. It should be noted that the amount excreted in the feces stems from both the unabsorbed fraction as well as from the fraction of the substance following bUiary excretion. [Pg.100]

The pharmacokinetic information that can be obtained from the first study in man is dependent on the route of administration. When a drug is given intravenously, its bioavailabihty is 100%, and clearance and volume of distribution can be obtained in addition to half-life. Over a range of doses it can be established whether the area under the plasma concentration-time curve (AUC) increases in proportion to the dose and hence whether the kinetic parameters are independent of dose (see Figure 4.1). When a drug is administered orally, the half-life can still be determined, but only the apparent volume of distribution and clearance can be calculated because bioavailability is unknown. However, if the maximum concentration (Cmax) and AUC increase proportionately with dose, and the half-life is constant, it can usually be assumed that clearance is independent of dose. If, on the other hand, the AUC does not increase in proportion to the dose, this could be the result of a change in bioavailability, clearance or both. [Pg.160]

Most physicians will be familiar with the basic shape of a plasma concentration-time curve following oral or intravenous administration, and they are likely to be familiar with, or at least readily imderstand, the simple terms that relate to this shape. Such terms - (1) maximum plasma concentration (Cmax). (2) time to maximum plasma concentration (fmax), (3) area under the plasma concentration-time curve (AUC) and (4) half-life (fi/2) - are illustrated in Figure 5.2. [Pg.177]

Pharmacokinetics Ticlopidine is rapidly absorbed (more than 80%), with peak plasma levels occurring at approximately 2 hours after dosing, and is extensively metabolized. Administration after meals results in a 20% increase in the area under the plasma concentration-time curve (AUC). Ticlopidine displays nonlinear pharmacokinetics and clearance decreases markedly on repeated dosing. Ticlopidine binds reversibly (98%) to plasma proteins, mainly to serum albumin and lipoproteins. The binding to albumin and lipoproteins is nonsaturable over a wide concentration range. Ticlopidine also binds to alpha-1 acid glycoprotein at concentrations attained with the recommended dose, 15% or less in plasma is bound to this protein. [Pg.102]

Metabolism/Excretion - Carvedilol is extensively metabolized. Following oral administration in healthy volunteers, carvedilol accounted for only about 7% of the total in plasma as measured by area under the curve. Less than 2% of the dose was excreted unchanged in the urine. The metabolites of carvedilol are excreted primarily via the bile into the feces. [Pg.535]

Absorption - Atier ora administration, ezetimibe is absorbed and extensively conjugated to a pharmacologically active phenolic glucuronide (ezetimibe-glucuronide). After a single 10 mg dose of ezetimibe to fasted adults, mean ezetimibe peak plasma concentrations (Cmax) of 3.4 to 5.5 ng/mL were attained within 4 to 12 hours (Tmax)- The absolute bioavailability of ezetimibe cannot be determined, as the compound is virtually insoluble in aqueous media suitable for injection. Ezetimibe has variable bioavailability the coefficient of variation, based on intersubject variability, was 35% to 60% for area under the curve (AUC) values. [Pg.634]


See other pages where Area under curve administration is mentioned: [Pg.207]    [Pg.461]    [Pg.60]    [Pg.402]    [Pg.86]    [Pg.88]    [Pg.195]    [Pg.169]    [Pg.169]    [Pg.391]    [Pg.316]    [Pg.135]    [Pg.482]    [Pg.1454]    [Pg.68]    [Pg.92]    [Pg.103]    [Pg.133]    [Pg.374]    [Pg.212]    [Pg.59]    [Pg.198]    [Pg.485]    [Pg.350]    [Pg.181]    [Pg.439]    [Pg.79]    [Pg.358]    [Pg.46]    [Pg.97]    [Pg.104]    [Pg.339]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Area under curve

© 2024 chempedia.info