Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis aqueous media

Ren, Y.M., Cai, C. 2008. Convenient and efficient method for synthesis of substituted 2-amino-2-chromenes using catalytic amount of iodine and K(2)CO(3) in aqueous medium. Catalysis Communications 9(6) 1017-1020. [Pg.44]

In a second attempt to extend the scope of Lewis-acid catalysis of Diels-Alder reactions in water, we have used the Mannich reaction to convert a ketone-activated monodentate dienophile into a potentially chelating p-amino ketone. The Mannich reaction seemed ideally suited for the purpose of introducing a second coordination site on a temporary basis. This reaction adds a strongly Lewis-basic amino functionality on a position p to the ketone. Moreover, the Mannich reaction is usually a reversible process, which should allow removal of the auxiliary after the reaction. Furthermore, the reaction is compatible with the use of an aqueous medium. Some Mannich reactions have even been reported to benefit from the use of water ". Finally, Lewis-acid catalysis of Mannich-type reactions in mixtures of organic solvents and water has been reported ". Hence, if both addition of the auxiliary and the subsequent Diels-Alder reaction benefit from Lewis-acid catalysis, the possibility arises of merging these steps into a one-pot procedure. [Pg.114]

First of all, given the well recognised promoting effects of Lewis-acids and of aqueous solvents on Diels-Alder reactions, we wanted to know if these two effects could be combined. If this would be possible, dramatic improvements of rate and endo-exo selectivity were envisaged Studies on the Diels-Alder reaction of a dienophile, specifically designed for this purpose are described in Chapter 2. It is demonstrated that Lewis-acid catalysis in an aqueous medium is indeed feasible and, as anticipated, can result in impressive enhancements of both rate and endo-exo selectivity. However, the influences of the Lewis-acid catalyst and the aqueous medium are not fully additive. It seems as if water diminishes the catalytic potential of Lewis acids just as coordination of a Lewis acid diminishes the beneficial effects of water. Still, overall, the rate of the catalysed reaction... [Pg.161]

The Diels-Alder reaction of nonyl acrylate with cyclopentadiene was used to investigate the effect of homochiral surfactant 114 (Figure 4.5) on the enantioselectivity of the reaction [77]. Performing the reaction at room temperature in aqueous medium at pH 3 and in the presence of lithium chloride, a 2.2 1 mixture of endo/exo adducts was obtained with 75% yield. Only 15% of ee was observed, which compares well with the results quoted for Diels-Alder reactions in cyclodextrins [65d]. Only the endo addition was enantioselective and the R enantiomer was prevalent. This is the first reported aqueous chiral micellar catalysis of a Diels-Alder reaction. [Pg.179]

The reaction is carried out by Cu or Co catalysis in an aqueous medium [9,10]. The reaction mechanism has not been identified clearly so far. Most likely, a radical-... [Pg.648]

In the case of ionic liquids, these general aspects for all fluid-fluid reactions are of particular importance, since mass transfer into an ionic liquid layer is generally slower than into an organic or aqueous medium. This is because ionic liquids usually have much higher viscosities than organic solvents. The least viscous ionic liquids are somewhat similar to ethylene glycol as demonstrated in Table 7.2. However, many ionic liquids used in liquid-liquid biphasic catalysis are significantly more viscous. [Pg.191]

In this form of catalysis, inclusion of the substrate in the CD cavity provides an environment for the reaction that is different from that of the bulk, normally aqueous, medium. In the traditional view, the catalytic effect arises from the less polar nature of the cavity (a microdielectric effect) and/or from the conformational restraints imposed on the substrate by the geometry of inclusion (Bender and Komiyama, 1978). However, catalysis may also arise as a result of differential solvation effects at the interface of the CD cavity with the exterior aqueous environment (Tee and Bennett, 1988a,b Tee, 1989). [Pg.13]

Studies of new combinations of bio- and chemo-catalysis, easily performed in aqueous medium, can lead to completely new conversion processes (under... [Pg.410]

Orotic acid readily forms dimers even when irradiated in liquid medium [582, 583]. 5-Bromouracil (5-BrU) in DNA is dehalogenated, rather than forming cyclobutane-type dimers. Such DNA derivatives are more sensitive to ultraviolet irradiation than normal DNAs [584-594], Irradiation of 5-bromo-uracil and derivatives in aqueous medium produces 5,5 -diuracil [590, 591]. However, derivatives such as 3-sbutyl-5-bromo-6-methyluracil have been reported to yield cyclobutane dimers either by irradiation of frozen aqueous solutions, or by catalysis with free radical initiators, such as aluminium chloride, ferric chloride, peroxides or azonitriles [595]. 5-Hydroxymethyluracil is reported to dimerize very slowly in frozen water at 2537 A [596]. The fundamental research in the photochemistry of the nucleic acids, the monomeric bases, and their analogues has stimulated new experiments in certain micro-organisms and approaches in such diverse fields as template coding and genetic recombination [597-616]. [Pg.316]

To a certain extent the expression multicomponent catalysts is an arbitrary one. There is no doubt that the pure chemical elements and pure chemical compounds have to be called single component catalysts. It is, however, questionable whether a material such as steel should be classified as a single component system or as a multicomponent system. Some of the multicomponent catalysts, for instance, the iron-alumina catalyst consist of two separate solid phases but it would be misleading to accept the presence of more than one phase as the decisive criterion for multicomponent catalysts. The more than additive catalytic action of Cu-ions and Fe-ions in an homogeneous aqueous medium represents obviously a case of multicomponent catalysis, although it occurs in a single-phase system. As to solid multicomponent catalysts, they usually consist of more than one single phase, but there are exceptions to this rule, such as in cases in which mixed crystals or solid solutions are formed from the components. [Pg.99]

Vj/Vj/V j/V -Tctramethylclhylcncdiaminc (TMEDA) has been compared with DABCO in its catalysis of the reaction in aqueous medium.170... [Pg.20]

The role of catalysis in membrane assembly is emphasized again by the above model since the N-terminal sequence of the nascent polypeptide chain of a spanning protein is released by proteolysis as soon as it reaches the cytosol. The N-terminal polypeptide chain extension may help the chain penetrate the hydrophobic bilayer and solubilize the resulting hydrophobic N-terminal part of the chain in the aqueous medium of the cytoplasm. However, the role of the protease-catalyzed hydrolysis of the polypeptide chain in membrane assembly is minimized in the membrane trigger hypothesis (99). According to this model, the essential role of the leader sequence would be to modify, in association with the lipid bilayer, the folding pathway of the protein in such a way that the polypeptide chain could span the membrane. [Pg.88]

As mentioned earlier (Section 1.5) another example of novel catalysis in an aqueous medium is the use of lanthanide triflates as water-tolerant Lewis acid catalysts for a variety of organic transformations in water [39]. [Pg.28]

The employment of catalytic methodologies - homogeneous, heterogeneous and enzymatic - in water or supercritical carbon dioxide as the reaction medium holds much promise for the development of a sustainable chemical manufacturing industry. Water is cheap, abundantly available, non-toxic and non-inflammable and the use of aqueous biphasic catalysis provides an ideal basis for recovery... [Pg.323]

A discussion of catalysis would not be complete without a comparison of the catalysts we normally encounter in the laboratory or in industry with those that occur naturally (i.e., enzymes). Enzymes are proteins that are either soluble in the aqueous medium of the cell or attached to a cellular membrane. Soluble enzymes resemble homogeneous transition metal catalysts in ways other than their solubility characteristics. Enzymes have at least one region that serves as... [Pg.317]

The reactions of organic compounds can be catalyzed markedly in micellar solution. Catalysis by both normal micelles in aqueous medium and by reversed micelles in nonpolar solvents is possible (Fendler and Fendler, 1975 Kitahara, 1980). In normal micelles in aqueous medium, enhanced reaction of the solubilized substrate generally, but not always, occurs at the micelle-aqueous solution interface in reversed micelles in nonaqueous medium, this reaction occurs deep in the inner core of the micelle. [Pg.198]

The use of water as a suitable medium for catalysis has received much attention in recent years [1]. The increasing interest in this field stems from obvious economic and safety considerations. From an industrial point of view, an aqueous medium translates into waste reduction costs as well as the potential recovery of the catalyst via a biphasic process. The latter process is the foundation of the Ruhr-chemie/Rhone-Poulenc hydroformylation of alkenes, where, in 1998, it was reported to produce approximately 10% of the world s C4—C5 aldehyde capacity [2]. Furthermore, replacing flammable, carcinogenic, and explosive organic solvents with water leads to a safer working environment (cf. Section 5.2). [Pg.71]


See other pages where Catalysis aqueous media is mentioned: [Pg.67]    [Pg.362]    [Pg.68]    [Pg.344]    [Pg.177]    [Pg.213]    [Pg.227]    [Pg.181]    [Pg.188]    [Pg.21]    [Pg.157]    [Pg.243]    [Pg.193]    [Pg.306]    [Pg.111]    [Pg.815]    [Pg.35]    [Pg.95]    [Pg.79]    [Pg.37]    [Pg.189]    [Pg.537]    [Pg.529]    [Pg.111]    [Pg.468]    [Pg.92]    [Pg.108]    [Pg.464]    [Pg.393]    [Pg.44]    [Pg.200]    [Pg.177]    [Pg.143]   
See also in sourсe #XX -- [ Pg.448 , Pg.449 , Pg.450 , Pg.451 , Pg.452 , Pg.453 , Pg.454 ]




SEARCH



Asymmetric Catalysis in Aqueous Media

Catalysis/catalysts aqueous media

Heterogeneous Asymmetric Catalysis in Aqueous Media

Heterogeneous catalysis aqueous media

© 2024 chempedia.info