Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aprotic solvents dimethylformamide

This group tends to react violently with protic organic solvents, water, and the aprotic solvents, dimethylformamide and dimethyl sulfoxide. Their facile reaction with ethers is also potentially hazardous. [Pg.26]

Further improvements in dehalogenation selectivity and yields can be achieved by using dipolar aprotic solvents. Dimethylformamide has mostly been used for this purpose,18,56,84 97 although dimethyl sulfoxide,98,99 especially when combined with sonication at room temperature (vide infra), deserves attention in particular cases.100,101 Other polar and dipolar aprotic solvents have also been used, namely, acetone,4 butan-2-one,4 acetonitrile,102 acetic anhydride,103104 ethyl acetate,61 tetrahydrothiophene 1,1-dioxide (sulfolane)105 and hexamethyl-phosphoric triamide,106 but no details were reported on their advantages over dimelhylform-amide or dimethyl sulfoxide. Better performance of dipolar aprotic solvents, such as dimethyl-formamide, over other solvents has been demonstrated in the recent comparison of the dehalogenation of 4,5-dichloro-4,5,5-trifluoropentan-l-ol (4) with zinc in various solvents.90... [Pg.126]

A wide variety of organic solvents has been used to conduct bioconversions including nonpolar solvents such as isooctane, n-hexane, and toluene, in addition to methanol, acetone, and other water-miscible solvents. Dipolar aprotic solvents dimethylformamide (DMF) and dimethylsulfoxide (DMSO) are also compatible with many enzymes and are often used to enhance the solubility of substrates in combination with a nonpolar solvent. Tertiary alcohols such as f-butanol and t-amyl alcohol have been used for many lipase-mediated esterifications as the hindered tertiary alcohol is not typically a good substrate for most enzymes. It should be noted that the presence of small amounts of water is essential for the effective use of most biocatalysts in organic solvents. In some cases an enzyme may only require a monolayer of water molecules on its surface in order to operate. In other cases there may need to be enough water to form reverse micelles where the biocatalyst is contained within a predominantly aqueous... [Pg.1402]

In this article we are concerned with the differences between the rates of Sif2 reactions in protic and in dipolar aprotic solvents. For this reason, we choose a dipolar aprotic solvent, dimethylformamide, as the reference solvent and define a hypothetically ideal unimolar solution in DMF at 25°C as our standard state (Parker, 1966). All solvent activity coefficients, which are denoted by yf, are referred to this standard state, unless otherwise noted. [Pg.179]

The reduction of anthracene (abbreviated A, C14H10, Fig. 7.9) in the aprotic solvent dimethylformamide (DMF) has been studied by B.S. Jensen etal [J.Am. Chem. Soc. 97 (1975) 5211]. The comparative voltammetry in the presence of differing concentrations of phenol has been discussed by J.-M. Saveant in Elements of Molecular and Biomolecular Electrochemistry [(2006) John Wiley and Sons]. Exemplar voltammetry is given in Fig. 7.10. [Pg.137]

These solvents may be categorized as polar protic (water, methanol, formamide), polar aprotic (acetonitrile, dimethylformamide) and nonpolar aptotic (dioxane). (See Table 7.) Artaki et al. [89] explained that under base-catalyzed condensation conditions (pH > 2.5), the aprotic solvent, dioxane, is unable to hydrogen bond to the SiO" nucleophile. In addition, because it is nonpolar, it does not tend to stabilize the reactants with respect to the activated complex. Therefore, dioxane should result in a significant enhancement of the condensation rate and cause an efficient condensation leading to the formation of large, compact spherical particles. The polar, aprotic solvents, dimethylformamide and acetonitrile, also do not hydrogen bond to the silicate nucleophile involved in the condensation reaction. However, due to their polarity the anionic reactants are stabilized with respect to the activated complex slowing down the reaction to some extent. [Pg.80]

The reaction product of 4,4 -bismaleimidodiphenylmethane and 4,4 -diaminophenylmethane, known as Kerimide 601 [9063-71-2] is prepolymerized to such an extent that the resulting prepolymer is soluble in aprotic solvents such as /V-methy1pyrro1idinone [872-50-4] dimethylformamide [68-12-2] and the like, and therefore can be processed via solution techniques to prepreg. Kerim ide 601 is mainly used in glass fabric laminates for electrical appHcations and became the industry standard for polyimide-based printed circuit boards (32). [Pg.26]

Other measures of nucleophilicity have been proposed. Brauman et al. studied Sn2 reactions in the gas phase and applied Marcus theory to obtain the intrinsic barriers of identity reactions. These quantities were interpreted as intrinsic nucleo-philicities. Streitwieser has shown that the reactivity of anionic nucleophiles toward methyl iodide in dimethylformamide (DMF) is correlated with the overall heat of reaction in the gas phase he concludes that bond strength and electron affinity are the important factors controlling nucleophilicity. The dominant role of the solvent in controlling nucleophilicity was shown by Parker, who found solvent effects on nucleophilic reactivity of many orders of magnitude. For example, most anions are more nucleophilic in DMF than in methanol by factors as large as 10, because they are less effectively shielded by solvation in the aprotic solvent. Liotta et al. have measured rates of substitution by anionic nucleophiles in acetonitrile solution containing a crown ether, which forms an inclusion complex with the cation (K ) of the nucleophile. These rates correlate with gas phase rates of the same nucleophiles, which, in this crown ether-acetonitrile system, are considered to be naked anions. The solvation of anionic nucleophiles is treated in Section 8.3. [Pg.360]

An inert solvent such as benzene, toluene or xylene, or an excess of the alcohol corresponding to the alkoxide is often used as solvent. When a dipolar aprotic solvent such as A,A-dimethylformamide (DMF) or dimethylsulfoxide (DMSO) is used, the reaction often proceeds at higher rate. [Pg.292]

Nucleophilic displacement reactions One of the most common reactions in organic synthesis is the nucleophilic displacement reaction. The first attempt at a nucleophilic substitution reaction in a molten salt was carried out by Ford and co-workers [47, 48, 49]. FFere, the rates of reaction between halide ion (in the form of its tri-ethylammonium salt) and methyl tosylate in the molten salt triethylhexylammoni-um triethylhexylborate were studied (Scheme 5.1-20) and compared with similar reactions in dimethylformamide (DMF) and methanol. The reaction rates in the molten salt appeared to be intermediate in rate between methanol and DMF (a dipolar aprotic solvent loiown to accelerate Sn2 substitution reactions). [Pg.184]

In contrast with protic solvents, which decrease the rates of SN2 reactions by lowering the ground-state energy of the nucleophile, polar aprotic solvents increase the rates of Sn2 reactions by raising the ground-state energy of the nucleophile. Acetonitrile (CH3CN), dimethylformamide ((Chy NCHO,... [Pg.370]

Cross-hnked polyacrylamides are a group of hydrophihc solid supports introduced primarily for preparation of biopolymers (Fig. 4). Unhke PS resins, polyacrylamides have excellent swelling capacity in both protic (water, alcohols) and aprotic (dichloromethane, dimethylformamide) solvents [88]. These beads are stable towards bases, acids, and weak reducing and oxidizing agents [89]. Predictably, conditions under which amide bonds are cleaved (i.e., sodium in liquid ammonia) [90] lead to rapid decomposition of the polymer. [Pg.86]

Amides often give rise to accidents that are difficult to interpret because so many reagents are present and/or because of the complexity of the reactions that are brought into play. It is difficult to find a classification for this group. The first point is the fact that most accidents are due to dimethylformamide (DMF), which is much used as a polar aprotic solvent. When attempting to classify these types of dangerous reactions with this compound, as a model, it can be said that they are mainly due to ... [Pg.338]

The rate of alkylation of enolate ions is strongly dependent on the solvent in which the reaction is carried out.41 The relative rates of reaction of the sodium enolate of diethyl n-butylmalonate with n-butyl bromide are shown in Table 1.3. Dimethyl sulfoxide (DMSO) and iV,Ai-dimethylformamide (DMF) are particularly effective in enhancing the reactivity of enolate ions. Both of these are polar aprotic solvents. Other... [Pg.17]

Parker37 defined class 4 as solvents "which cannot donate suitable labile hydrogen atoms to form strong hydrogen bonds with an appropriate species and proposed the designation dipolar aprotic solvents he extended their range down to s > 15 and quoted as examples acetone, acetonitrile, benzonitrile, dimethylformamide, dimethyl sulphoxide, nitrobenzene, nitromethane (41.8) and sulfolane (tetramethylene sulphone) (44), where e varies from 21 to 46.5, and the dipole moment p from 2.7 to 4.7 debye. [Pg.270]

The sulfonylated and acylated PPO presents solubility characteristics which are completely different from those of the parent PPO. Table V presents the solubility of some modified structures compared to those of unmodified PPO. It is very important to note that, after sulfonylation, most of the polymers become soluble in dipolar aprotic solvents like dimethyl sulfoxide (DMSO), N,N— dimethylformamide (DMF) and N,N-dimethylacetamide (DMAC). At the same time it is interesting to mention that, while PPO crystallizes from methylene chloride solution, all the sulfonylated polymers do not crystallize and form indefinitely stable solutions in methylene chloride. Only some of the acetylated polymers become soluble in DMF and DMAC, and none are soluble in DMSO. The polymers acetylated with aliphatic acid chlorides such as propionyl chloride are also soluble in acetone. [Pg.56]

Vat dyes (the best known are Tyrian purple, indigo and woad) are insoluble in water. Before dyeing, they must be reduced into water-soluble leucoforms. After impregnation of the textile, dyestuffs are again oxidized into colour forms. As far as their extraction is concerned, aprotic solvents are usually recommended, e.g. pyridine, dimethylformamide or dimethylsulfoxide. [Pg.367]

Fluoride ion catalyzes the hydrosilylation of both alkyl and aryl aldehydes to silyl ethers that can be easily hydrolyzed to the free alcohols by treatment with 1 M hydrogen chloride in methanol.320 The most effective sources of fluoride are TBAF and tris(diethylamino)sulfonium difluorotrimethylsilicate (TASF). Somewhat less effective are CsF and KF. Solvent effects are marked. The reactions are facilitated in polar, aprotic solvents such as hexamethylphosphortriamide (HMPA) or 1,3-dimethyl-3,4,5,6-tetrahydro-2(l //)-pyrirnidinone (DMPU), go moderately well in dimethylformamide, but do not proceed well in either tetrahydrofuran or dichloromethane. The solvent effects are dramatically illustrated in the reaction of undecanal and dimethylphenylsilane to produce undecyloxyphenyldimethylsi-lane. After one hour at room temperature with TBAF as the source of fluoride and a 10 mol% excess of silane, yields of 91% in HMPA, 89% in DMPU, 56% in dimethylformamide, 9% in tetrahydrofuran, and only 1% in dichloromethane are obtained (Eq. 164).320... [Pg.60]


See other pages where Aprotic solvents dimethylformamide is mentioned: [Pg.713]    [Pg.762]    [Pg.423]    [Pg.219]    [Pg.20]    [Pg.24]    [Pg.553]    [Pg.172]    [Pg.111]    [Pg.293]    [Pg.713]    [Pg.762]    [Pg.423]    [Pg.219]    [Pg.20]    [Pg.24]    [Pg.553]    [Pg.172]    [Pg.111]    [Pg.293]    [Pg.513]    [Pg.367]    [Pg.102]    [Pg.241]    [Pg.398]    [Pg.260]    [Pg.1021]    [Pg.161]    [Pg.125]    [Pg.152]    [Pg.173]    [Pg.83]    [Pg.211]    [Pg.357]    [Pg.1021]    [Pg.179]    [Pg.345]    [Pg.224]    [Pg.448]    [Pg.60]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Aprotic

Aprotic solvent

Dimethylformamide

Dimethylformamide, solvent

Solvent aprotic solvents

© 2024 chempedia.info