Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Approach description

When symmetry is given, there is no need to consider the flow in a micro device or even a micro channel as a whole, but favorably one can refer to only a small part of it and regard this as a true functional region. A first-approach description for slug flow, according to the above consideration, may therefore refer to the repeti-... [Pg.2]

Multivariate statistical techniques are commonly employed in near-IR quantitative and qualitative analysis because these approaches have been proven useful for extracting desired information from near-IR spectra, which often contain up to 1200 wavelengths of observation per spectrum. Principal component analysis/principal component regression (PCA/ PCR) is one such multivariate approach. Descriptions of this... [Pg.88]

The first main idea of this work is to refuse the assumption of possible one-step transfer of several (more than one) electrons in one elementary electrochemical act and to consider any real many-electron process as a sequence of one-electron steps. Although this idea is not new (it follows immediately from quantum theories of electron transfer [4]), it is not followed consistently in research practice. The reason is that a number of significant problems ought to be overcome in such an approach description of the accompanying intervalence chemical reactions, general scheme of the mechanism, estimation of stability of low-valence intermediate species and... [Pg.179]

Polysaccharides Modification approaches Description of reactions or products Potential applications... [Pg.5]

However, the approach description, just as it is, does not support associating our derived safety contracts in Step 3 with the safety argument without proper adjustments. Hence, a set of rules are introduced to guide the reuse of the approach in the work of this paper, as follows ... [Pg.169]

In appendix, a formal description of the model can be found, using the Express language, based on the STEP (STandard for the Exchange of Product model data) standardized approach (ISO 10303). [Pg.926]

The statistical mechanical approach, density functional theory, allows description of the solid-liquid interface based on knowledge of the liquid properties [60, 61], This approach has been applied to the solid-liquid interface for hard spheres where experimental data on colloidal suspensions and theory [62] both indicate 0.6 this... [Pg.62]

In this section we consider electromagnetic dispersion forces between macroscopic objects. There are two approaches to this problem in the first, microscopic model, one assumes pairwise additivity of the dispersion attraction between molecules from Eq. VI-15. This is best for surfaces that are near one another. The macroscopic approach considers the objects as continuous media having a dielectric response to electromagnetic radiation that can be measured through spectroscopic evaluation of the material. In this analysis, the retardation of the electromagnetic response from surfaces that are not in close proximity can be addressed. A more detailed derivation of these expressions is given in references such as the treatise by Russel et al. [3] here we limit ourselves to a brief physical description of the phenomenon. [Pg.232]

This description is traditional, and some further comment is in order. The flat region of the type I isotherm has never been observed up to pressures approaching this type typically is observed in chemisorption, at pressures far below P. Types II and III approach the line asymptotically experimentally, such behavior is observed for adsorption on powdered samples, and the approach toward infinite film thickness is actually due to interparticle condensation [36] (see Section X-6B), although such behavior is expected even for adsorption on a flat surface if bulk liquid adsorbate wets the adsorbent. Types FV and V specifically refer to porous solids. There is a need to recognize at least the two additional isotherm types shown in Fig. XVII-8. These are two simple types possible for adsorption on a flat surface for the case where bulk liquid adsorbate rests on the adsorbent with a finite contact angle [37, 38]. [Pg.618]

A1.3.3 DENSITY FUNCTIONAL APPROACHES TO QUANTUM DESCRIPTIONS OF CONDENSED PHASES... [Pg.92]

Consider an ensemble of Brownian particles. The approach of P2 to as 00 represents a kmd of diflfiision process in velocity space. The description of Brownian movement in these temis is known as the Fo/c/cer-PIanc/c method [16]- For the present example, this equation can be shown to be... [Pg.696]

Linear response theory is an example of a microscopic approach to the foundations of non-equilibrium thennodynamics. It requires knowledge of tire Hamiltonian for the underlying microscopic description. In principle, it produces explicit fomuilae for the relaxation parameters that make up the Onsager coefficients. In reality, these expressions are extremely difficult to evaluate and approximation methods are necessary. Nevertheless, they provide a deeper insight into the physics. [Pg.708]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

How are fiindamental aspects of surface reactions studied The surface science approach uses a simplified system to model the more complicated real-world systems. At the heart of this simplified system is the use of well defined surfaces, typically in the fonn of oriented single crystals. A thorough description of these surfaces should include composition, electronic structure and geometric structure measurements, as well as an evaluation of reactivity towards different adsorbates. Furthemiore, the system should be constructed such that it can be made increasingly more complex to more closely mimic macroscopic systems. However, relating surface science results to the corresponding real-world problems often proves to be a stumbling block because of the sheer complexity of these real-world systems. [Pg.921]


See other pages where Approach description is mentioned: [Pg.159]    [Pg.527]    [Pg.167]    [Pg.45]    [Pg.149]    [Pg.91]    [Pg.641]    [Pg.82]    [Pg.159]    [Pg.527]    [Pg.167]    [Pg.45]    [Pg.149]    [Pg.91]    [Pg.641]    [Pg.82]    [Pg.288]    [Pg.180]    [Pg.524]    [Pg.660]    [Pg.32]    [Pg.36]    [Pg.686]    [Pg.686]    [Pg.708]    [Pg.726]    [Pg.755]    [Pg.834]    [Pg.842]    [Pg.901]    [Pg.907]    [Pg.907]    [Pg.1265]   
See also in sourсe #XX -- [ Pg.462 ]




SEARCH



A Brief Description of the Analytical Approach

Approach, total description

Descriptive Approaches

Descriptive Approaches

Phenomenological Approach to the Description of Interdiffusion in Two-Phase Zones

Simplest model approach, description

© 2024 chempedia.info