Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications stereoselective

From the point of view of organic synthetic applications, stereoselectivity is the most valuable property of enzymes [32]. However, whereas enzymes commonly show high (prochiral- and enantio-) selectivity when processing their natural... [Pg.27]

As a synthetic application, stereoselective synthesis of potent anti-HIV (—)-ilimaquinone, is shown in eq. 8.21. [Pg.209]

The holy grail of glycosylations — the generally applicable, stereoselective and technically simple glycosylation method — has yet to be found. Indeed, the search will undoubtedly continue in the future. Nevertheless, even if a single general method is developed, because of the highly... [Pg.169]

The Peterson reaction has two more advantages over the Wittig reaction 1. it is sometimes less vulnerable to sterical hindrance, and 2. groups, which are susceptible to nucleophilic substitution, are not attacked by silylated carbanions. The introduction of a methylene group into a sterically hindered ketone (R.K. Boeckman, Jr., 1973) and the syntheses of olefins with sulfur, selenium, silicon, or tin substituents (D. Seebach, 1973 B.T. Grdbel, 1974, 1977) illustrate useful applications. The reaction is, however, more limited and time consuming than the Wittig reaction, since metallated silicon derivatives are difficult to synthesize and their reactions are rarely stereoselective (T.H. Chan, 1974 ... [Pg.33]

The ene reaction of an alkyne and an alkene produces a 1,4-diene. An important application, the regio- and stereoselective coupling of 17-(Z)-ethylidene steroids and alkynes to give cholane-type 16,22-dienes, is described in section 4.5.2. [Pg.40]

Unique chemistry is associated with the cyclopentenone all five carbon atoms can be functionalized, and the endo-methyl groups of the acetonide assure clean stereoselective addition of the alkenylcopper reagent from the convex side. The use of the acetonide group to control enolate regioselectivity and to mask alcohols should be generally applicable. [Pg.277]

In the last fifteen years macrolides have been the major target molecules for complex stereoselective total syntheses. This choice has been made independently by R.B. Woodward and E.J. Corey in Harvard, and has been followed by many famous fellow Americans, e.g., G. Stork, K.C. Nicolaou, S. Masamune, C.H. Heathcock, and S.L. Schreiber, to name only a few. There is also no other class of compounds which is so suitable for retrosynthetic analysis and for the application of modem synthetic reactions, such as Sharpless epoxidation, Noyori hydrogenation, and stereoselective alkylation and aldol reactions. We have chosen a classical synthesis by E.J. Corey and two recent syntheses by A.R. Chamberlin and S.L. Schreiber as examples. [Pg.319]

Silyl ethers serve as preeursors of nucleophiles and liberate a nucleophilic alkoxide by desilylation with a chloride anion generated from CCI4 under the reaction conditions described before[124]. Rapid intramolecular stereoselective reaction of an alcohol with a vinyloxirane has been observed in dichloro-methane when an alkoxide is generated by desilylation of the silyl ether 340 with TBAF. The cis- and tru/u-pyranopyran systems 341 and 342 can be prepared selectively from the trans- and c/.y-epoxides 340, respectively. The reaction is applicable to the preparation of 1,2-diol systems[209]. The method is useful for the enantioselective synthesis of the AB ring fragment of gambier-toxin[210]. Similarly, tributyltin alkoxides as nucleophiles are used for the preparation of allyl alkyl ethers[211]. [Pg.336]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

The direct goal of stereochemical strategies is the reduction of stereochemical complexity by the retrosynthetic elimination of the stereocenters in a target molecule. The greater the number and density of stereocenters in a TGT, the more influential such strategies will be. The selective removal of stereocenters depends on the availability of stereosimplifying transforms, the establishment of the required retrons (complete with defined stereocenter relationships), and the presence of a favorable spatial environment in the precursor generated by application of such a transform. The last factor, which is of crucial importance to stereoselectivity, mandates a bidirectional approach to stereosimplification which takes into account not only the TGT but also the retrosynthetic precursor, or reaction substrate. Thus both retrosynthetic and synthetic analyses are considered in the discussion which follows. [Pg.47]

Spatial and/or coordinative bias can be introduced into a reaction substrate by coupling it to an auxiliary or controller group, which may be achiral or chiral. The use of chiral controller groups is often used to generate enantioselectively the initial stereocenters in a multistep synthetic sequence leading to a stereochemically complex molecule. Some examples of the application of controller groups to achieve stereoselectivity are shown retrosynthetically in Chart 19. [Pg.50]

In summary, modem synthetic methodology allows the stereoselective generation of one, two, or even more stereocenters in a single reaction with or without spatial control by the substrate. The application of transforms to retrosynthetic simplification of stereochemistry requires the selection of transforms on the basis of both structural and stereochemical information in the target and also validation of the corresponding synthetic processes by analysis for both chemical feasibility and stereoselectivity. [Pg.51]

Clearable Stereocenter(s). Stereocenter(s) which can be eliminated retrosynthetically by application of a transform with stereocontrol (stereoselectivity). [Pg.96]

The high degree of stereoselectivity associated with most syntheses and reactions of oxiranes accounts for the enormous utility of these systems in steroid syntheses. Individual selectivity at various positions in the steroid nucleus necessitates the discussion of a collection of uniquely specific reactions used in the synthesis of steroidal epoxides. The most convenient and generally applicable methods involve the peracid, the alkaline hydrogen peroxide and the halohydrin reactions. Several additional but more limited techniques are also available. [Pg.2]

A rather unexpected discovery was made in connection to these investigations [49]. When the 1,3-dipolar cycloaddition reaction of la with 19b mediated by catalyst 20 (X=I) was performed in the absence of MS 4 A a remarkable reversal of enantioselectivity was observed as the opposite enantiomer of ench-21 was obtained (Table 6.1, entries 1 and 2). This had not been observed for enantioselective catalytic reactions before and the role of molecular sieves cannot simply be ascribed to the removal of water by the MS, since the application of MS 4 A that were presaturated with water, also induced the reversal of enantioselectivity (Table 6.1, entries 3 and 4). Recently, Desimoni et al. also found that in addition to the presence of MS in the MgX2-Ph-BOX-catalyzed 1,3-dipolar addition shown in Scheme 6.17, the counter-ion for the magnesium catalyst also strongly affect the absolute stereoselectivity of the reac-... [Pg.224]

Numerous examples of intramolecular Diels-Alder reactions have been repor-ted especially from application in the synthesis of natural products, where stereoselectivity is of particular importance e.g. syntheses of steroids. " ... [Pg.94]

For the purpose of stereoselective synthesis the selective elimination at the stage of the /3-hydroxysilane 5 is not a problem the diastereoselective preparation of the desired /3-hydroxysilane however is generally not possible. This drawback can be circumvented by application of alternative reactions to prepare the /3-hydroxysilane 2 however these methods do not fall into the category of the Peterson reaction. [Pg.228]

The intramolecular Sakurai reaction allows for the synthesis of functionalized bicyclic systems. By proper choice of the reaction conditions, especially of the Lewis acid or fluoride reagent used, high stereoselectivity can be achieved, which is an important aspect for its applicability in natural products synthesis. [Pg.247]

STEREOSELECTIVE HENRY REACTIONS AND APPLICATIONS TO ORGANIC SYNTHESIS... [Pg.51]


See other pages where Applications stereoselective is mentioned: [Pg.385]    [Pg.146]    [Pg.27]    [Pg.88]    [Pg.385]    [Pg.1788]    [Pg.1822]    [Pg.385]    [Pg.146]    [Pg.27]    [Pg.88]    [Pg.385]    [Pg.1788]    [Pg.1822]    [Pg.74]    [Pg.85]    [Pg.95]    [Pg.132]    [Pg.16]    [Pg.21]    [Pg.27]    [Pg.48]    [Pg.61]    [Pg.88]    [Pg.313]    [Pg.309]    [Pg.107]    [Pg.92]    [Pg.105]    [Pg.210]    [Pg.211]    [Pg.152]    [Pg.387]    [Pg.61]    [Pg.49]    [Pg.59]   
See also in sourсe #XX -- [ Pg.443 ]




SEARCH



Stereoselective Henry Reactions and Applications to Organic Synthesis

Stereoselective synthesis applications

© 2024 chempedia.info