Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Apatite fluorapatite

In nature, phosphorus is not foimd free but only in combination with oxygen in the form of phosphates. The commonest mineral is phosphorite (tricalcium phosphate) which occurs in Russia, North Africa, parfs of fhe Southern United States and in smaller quantities around the globe. There are many other native phosphates including coprolite and the apatites (fluorapatite, chlorapatite and hydroxyapatite). Industrial preparation involves the heating of calcium phosphate from such mineral deposifs or bone ash wifh silica chippings or sand and coke or anthracite in an electric furnace fo about 1500°C. Phosphorus distils over as a vapour and is condensed under water to produce the white allotrope. This can be further purified and converted into red phosphorus if required, although the bulk is now used in the production of phosphoric acid. [Pg.284]

Cheng K, Shen G, Weng WJ, Han GR, Ferreira JMF, Yang J (2001) Synthesis of hydroxyl-apatite/fluorapatite solid solution by a sol-gel method. Mater Lett 51 37-41 Chemg AM, Chow LC, Takagi S (2001) In vitro evaluation of a calcium phosphate cement root canal filler/sealer. J Endodontics 27 613-615... [Pg.659]

Phospha.tes. Many phosphates cl aim unique material advantages over siUcates that make them worth the higher material costs for certain apphcations. Glass-ceramics containing the calcium orthophosphate apatite, for example, have demonstrated good biocompatibiUty and, in some cases even bioactivity (the abiUty to bond with bone) (25). Recent combinations of fluorapatite with phlogopite mica provide bioactivity as well as machinability and show promise as surgical implants (26). [Pg.325]

Phosphorus is the eleventh element in order of abundance in crustal rocks of the earth and it occurs there to the extent of 1120 ppm (cf. H 1520 ppm, Mn 1060 ppm). All its known terrestrial minerals are orthophosphates though the reduced phosphide mineral schrieber-site (Fe,Ni)3P occurs in most iron meteorites. Some 200 crystalline phosphate minerals have been described, but by far the major amount of P occurs in a single mineral family, the apatites, and these are the only ones of industrial importance, the others being rare curiosities. Apatites (p. 523) have the idealized general formula 3Ca3(P04)2.CaX2, that is Caio(P04)6X2, and common members are fluorapatite Ca5(P04)3p, chloroapatite Ca5(P04)3Cl, and hydroxyapatite Ca5(P04)3(0H). In addition, there are vast deposits of amorphous phosphate rock, phosphorite, which approximates in composition to fluoroapatite. " These deposits are widely... [Pg.475]

The principal agents of tooth decay are the carboxylic acids produced when bacteria act on the remains of food. A more resistant coating forms when the OH ions in the apatite are replaced by F ions. The resulting mineral is called fluorapatite ... [Pg.717]

By far the most abundant phosphate mineral is apatite, which accounts for more than 95% of all P in the Earth s crust. The basic composition of apatite is listed in Table 14-2. Apatite exhibits a hexagonal crystal structure with long open channels parallel to the c-axis. In its pure form, F , OH , or Cl occupies sites along this axis to form fluorapatite, hydroxyapatite, or chlor-apatite, respectively. However, because of the "open" nature of the apatite crystal lattice, many minor substitutions are possible and "pure" forms of apatite as depicted by the general formula in Table 14-2 are rarely found. [Pg.362]

Of the possible substituting ions, COi ion is by far the most important followed by Na, S04 and Mg. The most common form of natural apatite in sedimentary rocks is francolite, a substituted form of carbonate fluorapatite deposited in marine systems. The substitution of col ior>s into the mineral lattice has a substantial effect on apatite solubility (Jahnke, 1984). More studies are required, however, before the effects of all substituting ions are imderstood and an accurate assessment of the solubility of complex, natural apatites can be made. [Pg.362]

The logarithm of the solubility product for hydroxyapatite is -58.6 and that of fluorapatite (CajtPO jF) is -60.6 (57), and thus, D = 0.01 in favour of fluoride incorporation into the solid apatite precipitate. Accordingly, it should be difficult to prepare solid solutions of these compounds by precipitation from aqueous solution and if prepared batchwise, they are expected to contain logarithmic gradients in their internal composition. Yet, Moreno et al.(M3) report linear changes in the lattice parameters of such solid solutions. They also determined their solubility behavior. [Pg.544]

In conclusion, the solubility data indicate that upon precipitation from aqueous solutions which have a F/OH molar ratio less than a certain value, slightly fluoridated hydroxyapatites will be formed (x .0.15), and above that ratio nearly pure fluor-apatite will be formed. Usually the F/OH ratio varies so that intimate mixtures of hydroxyapatite and fluorapatite will result (64). The effect of fluoride on teeth and bones are discussed elsewhere (52, 57). [Pg.554]

Fluorapatite (FA) corresponds to the chemical formula Caio(P04)eF2 and crystallises in the hexagonal space group PGs/m, with Z = 1 and unit-cell parameters a = b = 9.367 A and c = 6.884 A [1] (Fig. 2). From a structural viewpoint, fluorapatite is often considered as a crystalline model for other apatites and is seen as a reference apatitic array [2]. It is one of the very first apatite structures to have been solved. It has been thoroughly studied since the 1930s [3] and is well documented in the literature. In particular, Sudarsanan et al. [1] reported the single crystal refinement of X-ray diffraction (XRD) data, and the detailed description of atomic positions and local symmetry is fully available [4,5],... [Pg.284]

Fig. 3. Splitted view of atoms along the c axis of the hexagonal structure showing the two possible fluoride ion locations. In stoichiometric fluorapatite, fluoride ions locate in the equilateral triangle formed by Ca(ll) ions. In type B carbonate apatite, the replacement of P04 ions by ions creates an oxygen atom vacancy which may be occupied by a second kind of fluoride ion (adapted from Ref. [4]). (See Colour Plate Section at the end of this book.)... Fig. 3. Splitted view of atoms along the c axis of the hexagonal structure showing the two possible fluoride ion locations. In stoichiometric fluorapatite, fluoride ions locate in the equilateral triangle formed by Ca(ll) ions. In type B carbonate apatite, the replacement of P04 ions by ions creates an oxygen atom vacancy which may be occupied by a second kind of fluoride ion (adapted from Ref. [4]). (See Colour Plate Section at the end of this book.)...
Fluorapatite is a highly insoluble calcium phosphate phase. The solubility product of stoichiometric fluorapatite at 37°C is 3.19 0.14x10 " mol 1 (for Cas(P04)3F as reported by Moreno et al. [53]) and appears significantly lower than that of HA in the same conditions (7.36 0.93 x 10 ° mol for Ca5(P04)30H). Asuggested explanation for this very low solubility product is that cohesive forces are stronger in fluorapatite than in other apatites due to smaller unit-cell dimensions. The complete solid solution Ca-,o(P04)6(OH)2-xFx can be obtained. Initial solubility determinations have shown a solubility minimum for x close to 1 [54], related to the formation of hydrogen bonding between F and OH ions. These results were subsequently... [Pg.296]

In addition to end-member phases, such as fluorapatite and HA, several studies have reported thermodynamic data related to solid solutions of apatite with various cations involving substitutions like Ca-Mg, Ca-Cd, Ca-Pb and Ca-Sr [72-74]. The related enthalpies of mixing were obtained, and their variation versus composition was generally indicative of a non-statistical occupancy of the cationic sites of the apatitic structure. In some instances, the limits of cationic substitution for calcium were estimated (e.g. in the range 0.073-0.101 for Ca-Mg fluorapatites according to Ben Abdelkader et al. [74]). [Pg.299]

Synthetic fluor-containing apatites are prepared and investigated for biomedical applications and serve also as models to understand the formation of biological fluorapatites and some of their properties. The synthesis of fluoridated apatites has been accomplished in various ways from simple ion exchange in solution to more elaborate techniques involving sol-gel routes or thermal processes. Two main classes of synthesis routes are presented in this chapter high-temperature routes and low-temperature solution routes. [Pg.306]

Fluorhydroxyapatite can be synthesised by the traditional double-decomposition method generally used for apatite precipitation. An ammonium phosphate and fluoride solution (solution B) is added, dropwise, into a hot (generally at boiling temperature) calcium solution (solution A) at a basic pH level as previously published [122,123]. Fluorapatites close to stoichiometry are obtained (a = 2, see the following reaction equation) however, a very small residual amount of OH always seems to be present. Filtration and several washing operations are necessary to remove the counter-ions. The reaction is almost total due to the very low solubility of fluorhydroxyapatites. [Pg.308]

L.M. Rodriguez-Lorenzo, J.N. Hart, K.A. Gross, Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials 24 (2003) 3777-3785. [Pg.328]

In the presence of fluoride, calcium ions have been found to be more firmly anchored than in pure hydroxyapatite [67]. This enhances the overall resistance to dissolution. Thus, the presence of a thin stable film of fluorapatite on the surface of hydroxyapatite crystals has two effects, namely (i) resistance to diffusion and dissolution of the anion and (ii) firmer binding of calcium ions into the surface. Both of these make the resulting apatite structure more resistant to dissolution, regardless of the pH of the external medium, and they thereby increase the resistance of the mineral phase to the onset of caries. [Pg.342]

Under neutral conditions, fluoride is also able to induce nucleation and growth of apatite crystals without the involvement of OCP [72]. This requires fluoride concentrations of 0.5 ppm or higher, which are rarely achieved in vivo except in cases where fluorosis may result. It is significant that in severe cases of fluorotic enamel, ultra-structural studies [73] have shown the occurrence of a proliferation of apatite nuclei, suggesting that the presence of fluoride may act to encourage precipitation of crystals of fluorapatite. [Pg.342]


See other pages where Apatite fluorapatite is mentioned: [Pg.12]    [Pg.113]    [Pg.17]    [Pg.197]    [Pg.12]    [Pg.113]    [Pg.17]    [Pg.197]    [Pg.287]    [Pg.295]    [Pg.322]    [Pg.326]    [Pg.333]    [Pg.54]    [Pg.169]    [Pg.111]    [Pg.279]    [Pg.280]    [Pg.284]    [Pg.291]    [Pg.292]    [Pg.294]    [Pg.294]    [Pg.295]    [Pg.295]    [Pg.298]    [Pg.300]    [Pg.307]    [Pg.309]    [Pg.311]    [Pg.313]    [Pg.149]    [Pg.127]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Apatit

Apatite

Apatites (Fluorapatite and Hydroxyapatite)

Fluorapatit

Fluorapatite

© 2024 chempedia.info